

ARC/HRC/ERC Standard Linearführungen

WRC Breite Standard Linearführungen

ARR/HRR/LRR Rollen Linearführungen

www.cpc-Europa.de

HEADQUARTERS CHIEFTEK PRECISION Co., LTD.

No.3, Dali f³t Rd., Sinshih Township, Tainan Science Park, 741-45 Tainan, Taiwan, R.O.C TEL:+886-6-505 5858 Http://www.chieftek.com E-mail:service@mail.chieftek.com

cpc Europa GmbH

Industriepark 314, D-78244 Gottmadingen, Germany TEL:+49-7731-59130-38 FAX:+49-7731-59130-28

CHIEFTEK PRECISION USA

4881 Murietta Street. Chino, CA. 91710 Tel: +1-909-628-9300 Fax: +1-909-628-7171

CHIEFTEK MACHINERY KUNSHAN CO., LTD.
No.1188, Hongqiao Rd, Kunshan,
Jiangsu, P.R. China
TEL:+86-512-5525 2831
FAX:+86-512-5525 2851

09/2016

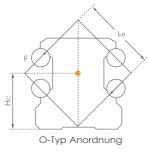
Linearführungen

Inhaltsverzeichnis

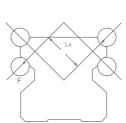
Standard Linearführungen	Seite
Produktübersicht	01 - 02
Produktspezifikationen (Standard)	03 - 06
Produktspezifikationen (Option)	07 - 10
Einbauhinweise	11
Technische Informationen	12 - 13
Lebensdauerberechnungen	14
Zulässige Höhenabweichungen	15
Bestellhinweise	16
ARC/HRC/ERC Standard Linearführungen	
Bestellinformationen	17 - 18
Abmessungen	19 - 27
WRC Breite Standard Linearführungen	
Übersicht	28
Bestellinformationen	29 - 30
Abmessungen	31 - 32
ARR/HRR/LRR Rollen Linearführungen	
Übersicht	33 - 34
Bestellinformationen	34
Abmessungen	35 - 42
Schmierung	
Schmiernippel Optionen	43 - 44
Adapter Set und Schmierpresse	45 - 46
Schmierintervalle	47
Montagehinweise	
Montagehinweise	48
Klemmelemente	
Handklemmelemente	49
Pneumatische Klemmelemente	50 - 51
Testreport Integriertes Schmierpad	
Testreport Integriertes Schmierpad	52

Produktübersicht

ARC/HRC/ERC Produktübersicht


cpc Linearführungen sind ausgelegt mit vier Laufbahnen in O-Anordnung. Die Präzisions-Stahlkugeln übertragen eingeleitete Kräfte unter einem Kontaktwinkel von 45 Grad (siehe nachfolgende Skizze). Im Vergleich zur X-Anordung ist durch die O-Anordnung eine höhere Torsionssteifigkeit gegeben. Um bei Tragzahlen und Steifigkeiten ein Optimum zu erreichen wurden trotz beschränkter Platzverhältnisse die höchstmögliche Anzahl an größtmöglichen Stahlkugeln eingesetzt.

Dadurch sind hohe statische und dynamische Momentbelastungen möglich, es gelten gleiche Tragzahlen für alle Belastungsrichtungen bei kompaktem Design.


Einheit: mm

Baugröße	Lo	Нс
15	12.4	9.35
20	16.4	12.5
25	19.5	14.5
30	24.0	17
35	30.4	19.5
45	38.2	24
55	43.1	28.5

X-Typ Anordnung

Ökologisches Schmiersystem (Eco-System):

- Das eingebettete Schmierreservoir versorgt die Wälzkörper direkt mit Schmiermittel. Durch diese Funktion können die Schmierintervalle erheblich verlängert werden. Bei Kurzhubeinsatz ist das Eco-System besonders wirksam.
 - **Endabdeckungen:**
 - Nachschmierung von allen Seiten möglich.

■ Standardmäßig im Führungswagen enthalten

- Das eingebettete Schmierreservoir versorgt die Wälzkörper direkt mit Schmiermittel. Durch diese Funktion können die Schmierintervalle erheblich verlängert werden. Bei Kurzhubeinsatz ist das Eco-System
 - besonders wirksam.

02

- Hohe Steifigkeit.
- Exzellente dynamische Eigenschaften: Vmax > 10 m/s, amax >450m/s².
- Hohe statische und dynamische Momentbelastungen möglich.

Kugelkette:

Ruhiger Ablauf

■ Patentiertes Design

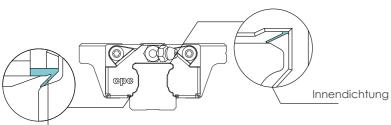
■ Gleiche Tragzahlen für alle Belastungsrichtungen.

■ Sehr leise

- Führungsschienen sind sowohl von oben (Schraubenkopfsenkung) als auch von unten (Gewinde) verschraubbar.
- Spezielle Oberflächenbeschichtungen sind möglich.

- Verstärktes Niro Stirnblech zur Steigerung der Führungswageneigenschaften Standardmäßig verstärkte Stahlabdeckungen an den Stirnseiten.
- Erhöhung der Steifigkeit in X-Achsen Richtung

Produktspezifikationen (Standard)


Abdichtung

Innendichtung

Die Doppellippendichtung vermeidet das Eindringen von Schmutzpartikeln und verhindert den Austritt von Schmiermittel.

Bodendichtung

Die untere Dichtleiste verhindert ebenfalls das Eindringen von Schmutzpartikeln und vermeidet den Austritt des Schmiermittels. Durch diese beiden Längsdichtungen und der stirnseitigen Dichtung besteht eine Rundum-Abdichtung des Führungswagens.

Bodendichtung

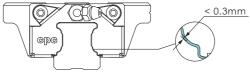
Enddichtuna

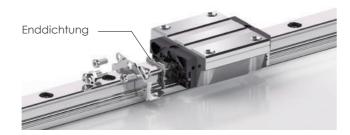
Die stirnseitige Doppellippen-Dichtung schützt stirnseitig vor dem Eindringen von Fremdpartikeln und stellt sicher, dass kein Schmiermittel aus dem Führungswagen austreten kann. Die Flexibilität und die Charakteristik des technischen Kunststoffmaterials TPU hat eine bessere Reibbeständigkeit und Reibfähigkeit, sowie einen höhere Spannungsriss-Schutz gegenüber den herkömmlichen NBR-Kunststoffen.

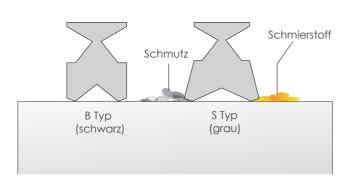
Standarddichtung (S)

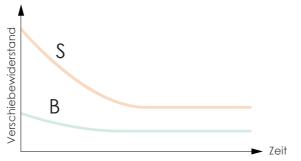
Die S-Dichtung hat vorgespannten Kontakt zur Oberfläche der Schiene, dadurch entsteht ein besserer Schutz gegen das Eindringen von Fremdpartikeln in den Führungswagen und gegen das Austreten von Schmiermittel. cpc empfiehlt den Einsatz dieser Dichtungsvariante (S-Typ) für Applikationen mit starker Verschmutzung in der Umgebung der Führung, zum Beispiel beim Einsatz in Holzbearbeitungsanlagen, etc. Der Verschiebewiderstand ist höher als bei den Leichtlaufdichtungen (B-Typ).

Leichtlaufdichtung (B)


Einsetzbar für die meisten Bedingungen mit leichtem Berührungskontakt auf der Schiene und beidseitiger Abstreiferfunktion mit wenig Verschiebewiderstand.


Vergleich des Verschiebewiderstandes der beiden Dichtungstypen


Der Verschiebewiderstand ist am größten bei neuen Linearführungen. Nach kurzer Einlaufzeit reduziert sich der Verschiebewiderstand und bleibt auf einem konstanten Level.


Verstärktes Niro-Stirnblech

Die stirnseitigen Niro-Bleche in L-Form werden mit Schrauben stirnseitig und von unten am Führungswagen befestigt. Die stirnseitigen Niro-Bleche verstärken die Kugelumlenkung, schützen die Kunststoffumlenkung vor Beschädigung und dienen gleichzeitig als Abstreifer für grobe Späne. Der Spalt zwischen der Führungsschiene und dem Stirnblech ist < 0.3 mm.

Durchschnittliche Reibung

In der unten stehenden Tabelle sind durchschnittliche Reibwerte der Laufwagen ohne Einfluss von Schmiermittel dargestellt.

Einheit: N

	ARC/HRC/ERC												
	F	Reibwert der Kugeln		Enddichtun	g (2 Seiten)								
Wagen		Vorspa	nnklasse		Bodendichtung + Innendichtung	S-Typ	В-Тур						
Тур	VC	VO	V1	V2		Standard	Leichtlauf						
15MN/FN	0.30	0.65	0.85	1.10	1.5	2.0	0.5						
20MN/FN	0.40	0.75	1.40	1.60	2.0	2.5	1.0						
25MN/FN	0.60	0.95	1.30	1.95	2.5	3.0	1.5						
30MN/FN	0.55	1.10	2.00	3.10	3.0	5.0	2.0						
35MN/FN	0.65	1.25	2.50	3.25	3.0	8.0	3.0						
45MN/FN	0.85	2.10	2.80	4.00	4.0	11.0	4.0						

Einheit: N

	ARC/HRC/ERC												
	F	Reibwert d	er Kugeln		Bodendichtung +	Enddichtun	g (2 Seiten)						
Wagen		Vorspa	nnklasse			S-Type	B-Type						
Тур	VC	VO	V1	V2	i i i i i i i i i i i i i i i i i i i	Standard	Leichtlauf						
15MS/FS	0.30	0.60	0.80	1.00	1.5	2.0	0.5						
20MS/FS	0.40	0.70	1.10	1.40	2.0	2.5	1.0						
25MS/FS	0.50	0.90	1.20	1.80	2.5	3.0	1.5						
30MS/FS	0.50	1.00 1.80 2.30		3.0	5.0	2.0							

Einheit: N

04

	ARC/HRC/ERC											
		Reibwert der Kugeln			Enddichtun	Enddichtung (2 Seiten)						
Wagen		Vorspannklasse			Bodendichtung + Innendichtung	S-Type	B-Type					
Тур	VC	VO	V1	V2	i inondicinong	Standard	Leichtlauf					
15ML/FL	0.40	0.70	0.90	1.40	1.5	2.0	0.5					
20ML/FL	0.50	0.80	1.60	1.80	2.0	2.5	1.0					
25ML/FL	0.70	1.20	1.80	2.00	2.5	3.0	1.5					
30ML/FL	0.80	1.40	2.20	2.80	3.0	5.0	2.0					
35ML/FL	0.90	1.60	2.70	3.50	3.0	8.0	3.0					
45ML/FL	L 1.00 2.30 3.50 4.55		4.55	4.0	11.0	4.0						

Beispiel:

1. ARC25MN-SZ-V1-N-BLOCK

Verschiebewiderstand = 1.3+2.5+3 = 6.8N

2. HRC30FL-BZ-V0-P-BLOCK

Verschiebewiderstand = 1.4+3+2 = 6.4N

Reibwert der Kugeln +

(Bodendichtung + Innendichtung)

+ Enddichtung (2 Seiten)

= Verschiebwiderstand (ohne Schmierstoff)

Produktspezifikationen

(Standard)

Sägespäne Test

Testmaterial

Dieser Test wurde mit von unten verschraubbaren Schienen und Laufwagen mit S-Dichtung und Fettschmierung, alternativ mit SZ-Dichtung (Schmierpad) und Ölschmierung, aufgebaut:

Schiene

Schiene von unten verschraubt (ARU/HRU)

Laufwagen

- 1. Mit Standard (S) Dichtung und mit Fett geschmiert
- 2. Mit Standard (S) Dichtung, Schmierpad (Z) und mit Öl geschmiert

Testbedingungen

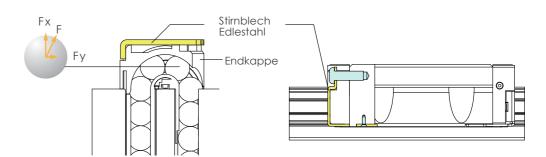
Hub= 600mm Testdistanz = 30m

Testergebnis

Aufnahme von unten (Öl)

Aufnahme von unten (Fett)

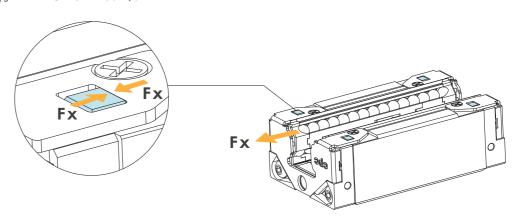
- 1. Sägespäne erreichen nicht die Kugellaufbahn im Wagen.
- 2. Sägespäne erreichen nicht das Innere des Laufwagen.


Augenmerk Model	Sägespäne er- reichen das Innere des Wagen	Sägespäne er- reichen die Kugel- laufbahn
ARU Schiene SZ Wagen Öl Schmierung	nein	nein
ARU Schiene S Wagen Fett Schmierung	nein	nein

Beim Einsatz von ARC/HRC-Schienen unter ähnlichen Bedingungen mit Abdeckkappen nehmen Sie bitte zur technischen Klärung Kontakt zu **cpc** Europa auf.

Edelstahl Stirnblech (Patentiert)

Verstärktes Stirnblech aus Edelstahl


Die stirnseitigen Niro-Bleche in L-Form werden mit Schrauben stirnseitig und von unten am Führungswagen befestigt. Die stirnseitigen Niro-Bleche verstärken die Kugelumlenkung, schützen die Kunststoffumlenkung vor Beschädigung und dienen gleichzeitig als Abstreifer für grobe Späne. Der Spalt zwischen der Führungsschiene und dem Stirnblech ist < 0,3 mm.

Patentiertes Stirnblech macht hohe Geschwindigkeiten möglich

Durch die zusätzlich zur Schraubenverbindung angebrachte formschlüssige Verbindung des Niro-Stirnblechs an der Unterseite des Führungswagens sind höhere Verfahrgeschwindigkeiten möglich.

Vmax > 10 m/s $\frac{\text{Omax}}{450\text{m/s}^2}$

Mehrere Schmierpositionen möglich

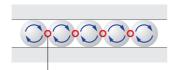
Hier eine Übersicht über die drei Möglichkeiten die Wagen nachzuschmieren. Links dargestellt die Standardvariante "Schmierung stimseitig", in der Mitte sieht man die Variante "Schmierung seitlich", auf dem rechten Bild ist die Alternative "Schmierung von oben" (inkl. O-Ring) zu sehen.

Produktspezifikationen

(Option)

Führungswagen mit Kugelkette

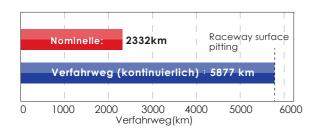
Die Kette (Käfig) vermeidet den direkten, punktförmigen, gegenseitigen Kontakt der Kugeln zueinander. Beim Führungswagen ohne Kette entstehen im gesamten Bereich der Kugelrückführungen gegenläufige Drehbewegungen und Gleitreibungszustände, zum einen am Kontaktpunkt der Kugeln selbst, aber auch an den angrenzenden Rücklaufzonen. Diese negativen Eigenschaften bewirken eine erhöhte Reibung und ein erhöhtes Laufgeräusch des Führungswagens. Die Kugelkette entspannt die komplette Rückführung der Kugelreihen und führt zu einem wesentlich gleichmäßigeren Ablauf des Führungswagens. Das hin und wieder auftretende Haken des Führungswagens, insbesondere bei Führungswagen mit Vorspannung ohne Kette, wird durch den Einsatz der Kette komplett vermieden.

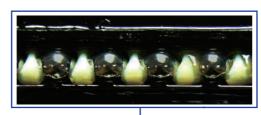


mit Kette

Beim Einsatz der Kette entsteht kein direkter Kontakt zwischen den Kugeln. Die Kugeln liegen einzeln eingebettet in den Kettengliedern.

ohne Kette

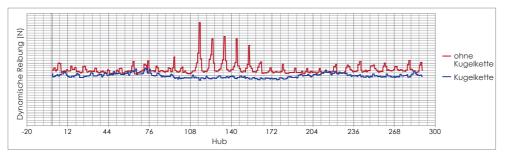

Bei dem Führungswagen ohne Kette besteht kein Puffer zwischen den Kugeln. Die Folgen sind erhöhte Reibung und erhöhtes Laufgeräusch.


Belastungstest

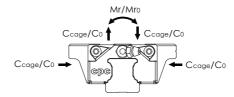
Bedingungen Modell: ARC25MN SZC V1H Geschwindigkeit: 1m/sec Belastungskapazität: 7.44kN(0.3C)

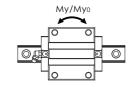
Dynamische Tragzahl C1∞: 24.8kN StrecKe: 960mm Vorspannung: 0.05C

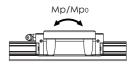
Lebensdauer $\left(\frac{C}{P}\right)^3 \times 100 \text{km} = \left(\frac{C}{0.05C + 0.3C}\right)^3 \times 100 \text{km} = 2332 \text{km}$



Nach dem Test, Fettreste und keine Auffälligkeiten an Kugeln und Fett


Gleittest


Modell: ARC25MN-SZ-V1-N-BLOCK Geschwindigkeit: 10 mm/sec



Belastungsfähigkeit und Lebensdauer

Die Berechnung der Lebensdauer kann nach den auf Seite 14 vorgegebenen Formeln errechnet werden. Beim Einsatz der Führungswagen mit Kugelkette ist eine Kugel im Tragbereich weniger im Einsatz als bei den Führungswagen ohne Kugelkette. Durch diese Tatsache muss der Tragzahlwert theoretisch reduziert werden. Bei Lebensdaueruntersuchungen von Führungswagen mit Kugelkette unter Laborbedingungen hat sich allerdings gezeigt, dass die erreichten Lebensdauerwerte im Vergleich zu Führungswagen ohne Kugelkette nicht reduziert auftraten. Der positive Effekt der Kettenglieder wie z. B. entspannte Rücklaufzone, keine Kontaktreibung der Kugeln zueinander und auch die Schmierfettverteilung gleichen den Verlust der einen Tragkugel komplett aus.

Dynamische Tragzahl

Die Tabelle rechts zeigt den Wert Ccage und Ciso verschiedener Laufwagentypen. (laut ISO-14728 Verordnung)

Modell		C _{ISO} (kN)	C _{cage} (kN)
ARC-MN C	15 20	9.4 15.4	11.8 22.3
ARC-FN C HRC-MN C	25	22.4	33.6
HRC-FN C	30	31.0	46.5
ERC-MN C	35	43.7	65.6
	45	67.6	101.4
	15	12.5	15.6
ARC-ML C	20	18.9	27.4
HRC-ML C	25	28.5	42.8
HRC-FL C	30	38.0	57.0
ERC-ML C	35	50.6	75.9
	45	86.2	129.3
	15	7.1	8.9
ARC-MS C	20	11.6	16.8
ARC-FS C ERC-MS C	25	16.8	25.2
EKC-IVIS C	30	21.3	32.0

Statische Tragzahl + statischer Moment

Die Ketten-Variante von ARC/HRC/ERC erhöht den Abstand zwischen den Kugeln auf der Auflagefläche. Dadurch verringert sich der Wert der statistischen Tragzahl Co und des statistischen Moments Mro, Mpo und Myo.

		Statische Tragzahl (kN)	Statisch	er Mome	nt (Nm)
Modell		Co	Mro	Мр0	Муо
	15	16.2	130	95	95
ARC-MN C	20	25.7	275	200	200
ARC-FN C HRC-MN C	25	36.4	465	340	340
HRC-FN C	30	49.6	780	530	530
ERC-MN C	35	70.2	1575	1010	1010
	45	102.8	2955	1775	1775
	15	24.3	195	215	215
ARC-ML C	20	34.3	370	350	350
HRC-ML C	25	51.6	655	640	640
HRC-FL C	30	66.1	1040	900	900
ERC-ML C	35	94.7	1940	1575	1575
	45	159.7	4185	3280	3280
100 110 0	15	10.8	85	45	45
ARC-MS C ARC-FS C	20	17.1	185	85	85
ERC-MS C	25	24.3	310	145	145
LICO MIO C	30	28.9	455	205	205

Produktspezifikationen |

(Option)

Schmiersystem (Bestell-Code: Z) (ARC/HRC)

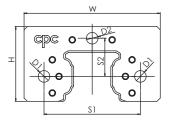
Integriertes Schmierreservoir

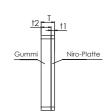
Die integrierten Schmierpads haben direkten Kontakt zu den Kugeln. Dadurch wird das Schmierintervall erheblich verlängert. Die Abmessungen der Laufwagen ändern sich dadurch nicht. Vor allem bei Kurzhubeinsatz ist unser Eco-System besonders wirkungsvoll.

unteres Schmierpad

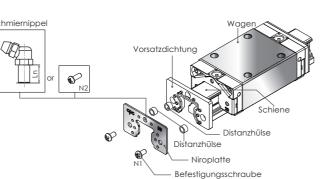
Vorsatzdichtung mit Niro-Metallplatte (NBR) (Bestell-Code: SN) (ARC/HRC/ARR/HRR/LRR)

Die Vorsatzdichtung wird empfohlen in Bereichen mit sehr schmutziger Umgebung, wie z.B. Holzbearbeitungsindustrie, Papierindustrie, beim Einsatz von Kühlschmiermittel und generell bei großer Verschmutzung.





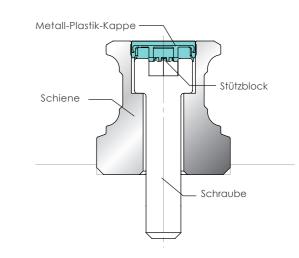
Abmessungen



	Einheit: mm											nheit: mm	
Größe	Ä	Äußere Abmessungen					Bohrloch				Schrauben		
	T	†1	†2	W	Н	\$1	S2	D1	D2	N1	N2	Ln	
15	4	1	3	33	20.3	25	10.2	3.5	3.5	M3x0.35	M3x0.5	9	
20	4	1	3	41	22.5	29	11.5	3.5	3.5	M3x0.35	M3x0.5	9	
25	5.2	1.2	4	47	26.5	36.5	13.5	3.5	6.5	M3x0.5	M6x0.75	12	
30	6	1.5	4.5	58	34.2	42.5	17.5	4.5	6.5	M4x0.5	M6x0.75	12	
35	6	1.5	4.5	68	39.3	50	20.5	4.5	6.5	M4x0.5	M6x0.75	12	
45	6	1.5	4.5	84	49.6	65	24.9	4.5	10	M4x0.5	PT1/8	15	

Montageanleitung

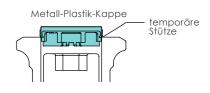
- 1. Führungswagen auf die Schiene aufziehen. (s. Seite 48)
- 2. Die Distanzhülsen sollten in der Dichtung montiert sein. Wenn nicht, bitte montieren.
- 3. Die Vorsatzdichtung von der Stirnseite der Schiene her bis zum Wagen aufschieben. Die Dichtung an den Wagen schrauben. Bei der Montage der Vorsatzdichtung darauf achten, dass diese nicht einseitig verspannt wird. Lassen Sie der Dichtung die Freiheit sich selbst optimal auszurichten.
- 4. Den Wagen auf einen gleichmäßigen, ruhigen Ablauf testen. Die stirnseitige Metallplatte darf keinen Kontakt zur Schiene haben. Auf Wunsch liefern wir die Vorsatzdichtung auch vormontiert.


Metall-Plastik-Kappe (patentiertes Design)

(Bestell-Code: MPC)

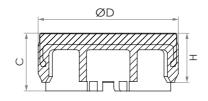
Eigenschaften Abdeckkappe

Vereinfachte Handhabung


- Der obere Teil der Kappe aus Edelstahl verhindert, dass scharfe Fremdkörper in die Bohrlöcher gelangen, die die Enddichtungen beschädigen könnten.
- Der untere Teil der Kappe ist aus Kunststoff und kann direkt auf der Schienemontiert werden, ohne dass das Bohrloch nachbearbeitet werden muss.

Reibungslose Installation der Kappe

Bei herkömmlichen Abdeckkappen kann während der Montage die Einbautiefe nur unzureichend beeinflusst werden, dadurch werden sie evtl. zu tief gesetzt. In den Unebenheiten können sich Verschmutzungen ansammeln. **CPC** Abdeckkappen wurden mit einem besonderen Stützblock entworfen. Dieser stabilisiert die Kappe und verhindert somit einen zu tiefen Sitz in der Senkbohrung.

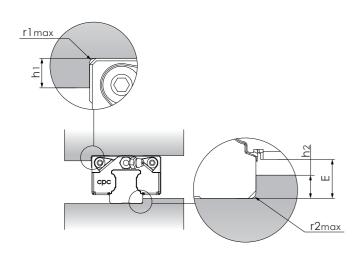

Kappe vor dem Einschlagen (Kunststoff-Stütze)

Kappe pach dem

Einschlagen
(8 Stützblöcke werden deformiert und passen sich der Schraube an)

10

Abmessungen

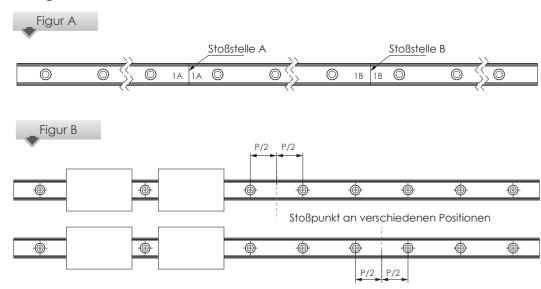


Größe	Schraube	äußerer Ø D	Н	С	Schiene
A4	M4	7.7	3.6	1.7	AR15, WRC21/15
A5	M5	9.7	3.4	4.0	AR20
A6	M6	11.3	2.9	3.5	AR25
A8	M8	14.3	3.9	4.5	AR30, AR35
A12	M12	20.4	5.0	5.6	AR45
A8-R	M8	14.3	8.0	9.5	ARR35

Einbauhinweise

Maße für Anschlagkante

Um eine präzise Montage der Linearführung auf der Auflagefläche sicherzustellen empfiehlt **cpc** das Fixieren an eine Anschlagkante oder in einer Anlagenut. Bitte berücksichtigen Sie die untenstehende Tabelle für deren Bemaßung.


Einheit: mm													
ARC/HRC/ERC													
Туре	r1 _{max}	r2max	hı	h2	Е								
15	0.5	0.5	4.0	2.5	3.3								
20	0.5	0.5	5.0	4.0	5.0								
25	1.0	1.0	5.0	5.0	6.0								
30	1.0	1.0	6.0	5.5	6.6								
35	1.0	1.0	6.0	6.5	7.6								
45	1.0	1.0	8.0	8.0	9.3								
55	1.5	1.5	10.0	10.0	12.0								

WRC											
Туре	rlmax	r2max	hı	h2	Е						
21/15	0.4	0.4	5.0	2.0	2.7						
27/20	0.4	0.4	5.0	3.0	3.5						

Stoßschienen

Die Standardlänge der Führungsschienen beträgt 4000 mm. Längere Führungsschienen können stumpf gestoßen werden. Die Stoßstellen werden entsprechend dem nachfolgenden Schema gekennzeichnet.

- 1. Um die Schienen richtig zu montieren folgen Sie bitte den Beschriftungen. (Figur A)
- 2. Sind zwei Schienen auf einer Achse parallel montiert sollten die Stoßpunkte unterschiedlich gesetzt werden. Eine Beeinträchtigung der Genauigkeit wird somit vermieden. (Figur B)
- 3. Bitte beachten Sie die Schrauben-Anzugsmomente auf Seite 12. Die Montage sollte von innen nach außen erfolgen.

Technische Information

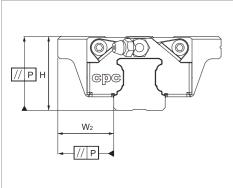
Schrauben-Anzugsmomente(Nm)

Schraubenklasse 12.9 Legierung Stahlschraube	Stahl	Gusseisen	Nichteisen- metall
МЗ	2.0	1.3	1.0
M4	4.1	2.7	2.1
M5	8.8	5.9	4.4
M6	13.7	9.2	6.9
M8	30	20	15
M10	68	45	33
M12	118	78	59
M14	157	105	78
M16	196	131	98

Vorspannung und Spiel

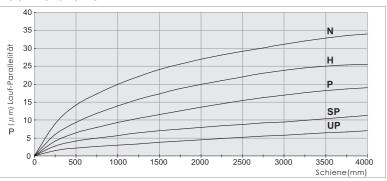
Die ARC/HRC/ERC Linearführungen gibt es in 4 verschiedenen Vorspannklassen VC, V0, V1, V2.

					ARC	/WRC				
					Spie	el (µm)			
Vorspann-	Beschrei-	Vorspann-	15	20	0.5		0.5	5 45		Einsatzbereich
klasse	bung	wert	WRC21/15	WRC27/20	25	30	35		55	
VC	Spiel	0	+5~+0	+5~+0	+5~+0	+5~+0	+5~+0	+5~+0	+5~+0	reibungslose Bewegung geringe Reibung
VO	leichte Vorspannung	0.02C	+0~-4	+0~-5	+0~-6	+0~-7	+0~-8	+0~-10	+0~-12	für präzise Anwendung, reibungslose Bewegung
V1	mittlere Vorspannung	0.05C	-4~-10	-5~-12	-6~-15	-7~-18	-8~-20	-10~-24	-12~-28	hohe Steifigkeit, Präzision, hohe Belastung
V2	starke Vorspannung	0.08C	-10~-16	-12~-18	-15~-23	-18~-27	-20~-31	-24~-36	-28~-45	sehr hohe Steifigkeit Präzision, sehr hohe Belastung


					HRC	/ERC					
Vorspann-	Beschrei-	Vorspann-			Spie	el (µm	1)			Einsatzbereich	
klasse	bung	wert	15	20	25	30	35	45	55	LII ISGIZDOI GICI	
VC	Spiel	0	+5~+0	+5~+0	+5~+0	+5~+0	+5~+0	+5~+0	+5~+0	reibungslose Bewegung geringe Reibung	
VO	leichte Vorspannung	0.02C	+0~-4	+0~-5	+0~-6	+0~-7	+0~-8	+0~-10	+0~-12	für präzise Anwendung, reibungslose Bewegung	
V1	mittlere Vorspannung	0.08C	-4~-12	-5~-14	-6~-16	-7~-19	-8~-22	-10~-25	-12~-29	hohe Steifigkeit, Präzision, hohe Belastung	
V2	starke Vorspannung	0.13C	-11~-19	-14~-23	-16~-26	-19~-31	-22~-35	-25~-40	-29~-46	sehr hohe Steifigkeit Präzision, sehr hohe Belastung	

Technische Informationen

Genauigkeit


Die ARC/HRC/ERC/WRC Linearführungen gibt es in 5 verschiedenen Genauigkeitsklassen: N, H, P, SP und UP. Für die Konstruktion kann, abhängig von der Maschinenanwendung, aus den oben genannten Genauigkeitsklassen gewählt werden.

Genauigkeit

					Genau	igkeitsta	belle
ı	Genauigkeitsklassen (µm)		UP	SP	Р	Н	N
	Abweichung des Höhenmaßes H	Н	±5	±10	±20	±40	±100
	Höhendifferenz ver- schiedener Wagen auf der gleichen Position der Schiene	ΔН	3	5	7	15	30
	Abweichung der Breitentoleranz W2	W 2	±5	±7	±10	±20	±40
	Breitendifferenz ver- schiedener Wagen auf der gleichen Position der Schiene	ΔW 2	3	5	7	15	30

Lauf-Parallelität

Anwendungen

Genauig- keitsklasse	Transport- Technik	Bearbeitungs- anlagen	Präzisions- Bearbeitungs- Anlagen	Prüf- und Messeinrichtungen
Ν	•	•		
Н	•	•	•	
Р		•		•
SP			•	•
UP				•
Beispiele	Handlings-Systeme Verpackungsanlagen Montage-Automaten	Holzbearbeitungs- Anlagen Stanz-Maschinen Spritzguss-Anlagen	Dre-/Fräs-Maschinen Schleif-Maschinen Erodier-Maschinen (EDM) CNC-Bearbeitungs- center	3D-Mess-Maschinen Mess- und Prüfanlagen

Lebensdauerberechnungen

Nominelle Lebensdauer in Meter

$$L = \left(\frac{C}{F}\right)^3 * 10^5 \text{ m}$$

Nominelle Lebensdauer in Stunden

$$L_h = \frac{L}{2 * s_{Hub} * n_{Hub} * 60}$$

Hinweis zur nominellen Lebensdauer

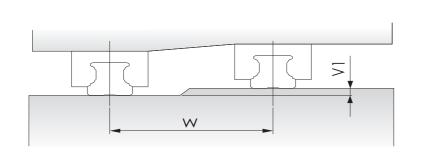
Die errechnete nominelle Lebensdauer entspricht einer 90 % Erlebenswahrscheinlichkeit bei unter gleichen Bedingungen eingesetzten Wälzlagern. Die 90 % Erlebenswahrscheinlichkeit ist ein statistisch erreichter Wert aus einer Vielzahl von praktischen Lebensdauertests

Die Formel für die nominelle Lebensdauerberechnung setzt eine konstante Geschwindigkeit voraus. Die Erlebenswahrscheinlichkeit setzt voraus, dass die Führungswagenlängsbewegung mindestens das 1,5-fache der Führungswagenlänge ist. Bei kürzeren Verfahrwegen bitte Rücksprache mit CPC Europa halten. Wird eine höhere Erlebenswahrscheinlichkeit angestrebt, muss der Faktor Cr berücksichtigt werden

Erlebenswahr		
(%)	L _{nr}	Cr
90	L _{10r}	1
95	L _{5r}	0,62
96	L _{4r}	0,53
97	L _{3r}	0,44
98	L _{2r}	0,33
99	L _{1r}	0,21

Nominelle Lebensdauer in Meter

$$L_{nr} = C_r * \left(\frac{C}{F}\right)^3 * 10^5 \text{ m}$$


Nominelle Lebensdauer in Stunden

$$L_{hr} = \frac{L_{nr}}{2 * s_{Hub} * n_{Hub} * 60}$$

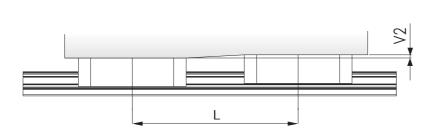
Zulässige Höhenabweichung der Aufspannfläche

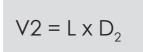
Querrichtung

Die zulässige Höhenabweichung in Querrichtung wird bestimmt anhand der nachfolgenden Formel.

$$V1 = W \times D_1$$

V1 = Zulässige Höhenabweichung


W = Abstand der Führungsschienen

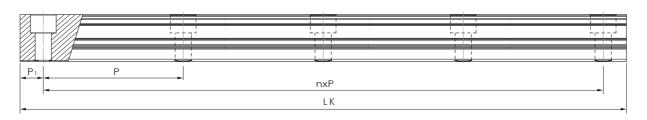

 D_1 = Berechnungsfaktor

Führungswagen ARC / HRC / ERC	Berechnungsfaktor D ₁							
Standard FN / MN Lang FL / ML	Spiel (VC)	Übergang (V0)	Vorspannung (0,05 C)	Vorspannung (0,08 C)	Vorspannung (0,013 C)			
Kurz FS / MS	4.5 x 10 ⁻⁴	4.0 x 10 ⁻⁴	2.3 x 10 ⁻⁴	2.0 x 10 ⁻⁴	1.5 x 10 ⁻⁴			

Längsrichtung

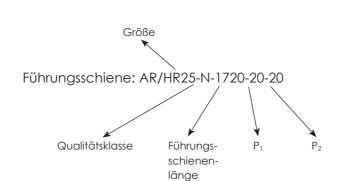
Die zulässige Höhenabweichung in Längsrichtung wird bestimmt anhand der nachfolgenden Formel.

V2 = Zulässige Höhenabweichung


L = Abstand der Führungswagen

D₂ = Berechnungsfaktor

	Berechnungsfaktor D ₂								
Führungswagen ARC / HRC / ERC		Führungswagenlänge							
	Standard	Kurz	Lang						
Spiel (VC)	4.5 x 10 ⁻⁴	6.3 x 10 ⁻⁴	3.8 x 10 ⁻⁴						
Übergang (V0)	4.0 x 10 ⁻⁴	5.8 x 10 ⁻⁴	3.2 x 10 ⁻⁴						
Vorspannung (0,05 C)	2.3 x 10 ⁻⁴	3.9 x 10 ⁻⁴	2.0 x 10 ⁻⁴						
Vorspannung (0,08 C)	2.0 x 10 ⁻⁴		1.7 x 10 ⁻⁴						
Vorspannung (0,013 C)	1.5 x 10 ⁻⁴		1.3 x 10 ⁻⁴						


Bestellhinweise

Bestimmung der Führungsschienenlänge und Bohrungsendabstände

Toleranzen: $P_1 \pm 0.5 \text{ mm}$ L = $\pm 1.0 \text{ mm}$

Größe (mm)	Teilung (P) (mm)	Senkungs - ø Schrauben- kopf
15	60	7,5
20	60	9,5
25	60	11
30	80	14
35	80	14
45	105	20
55	120	24

Auf ganze Zahlen abrunden.

Rechenbeispiel

Führungsschiene Gr. 25; Wunschlänge 1720 mm Berechnung:

LK / P	1720 / 60 =	28,66
Abrunden		28
Anzahl Bohrungen		29
Länge aller ganzen Bohrungs- abstände	28 x 60 =	1680 mm
	(1720 - 1680) / 2	20 mm

 $P_1 \ \text{und} \ P_2 \ \text{sollten}$ nicht kleiner als der 1/2 Senkungsdurchmesser plus 2 mm sein.

Das Beispiel zeigt eine symmetrische Verteilung der Abstände P_1 und P_2 .

Eine asysmmetrische Verteilung ist ebenfalls möglich.

Wenn P_1 und P_2 nicht vorgegeben sind, liefert $\mbox{\bf cpc}$ symmetrische Endabstände.

Legende:

LK Länge der Führungsschiene nach Kundenwunsch

P Bohrungsabstand

P₁ Abstand Schienenanfang zur ersten Bohrung

P₂ Abstand Schienenende zur letzten Bohrung

18

Bestellinformationen

Bet	tellcoc	de													
ARC	U	15	М	Ν	-B	2	Z	С	-V1	-P	-1480	-20	-20	-11	-J
															Code für Optionen
															Anzahl Schienen auf einer Achse (= 1 Set)
														Ende	Lochabstand (mm)
													Anfai	ng Lo	chabstand (mm)
												Schie	nenlö	inge	(mm)
											Genauigk	eitsklo	asse: 1	۷, H, ۱	P, SP, UP
									,	Vorsp	annung: V	'C, V(), V1,	V2	
									C: mi	t Kug	elkette (op	tiono	ıl) *		
								Z: mit	integ	rierte	er Schmiere	inhei	t (opt	ional) **
							Anzal	nl Wa	gen p	oro Sc	chiene				
					l	Dicht	ungst	yp: I	B: leic	hter I	Kontakt au	f der	Schie	ne	S: stärkerer Kontakt auf der Schiene
					Wage	enlän	ge:	L: lan	g N	l: nor	mal S: ku	rz			
	Wagenbreite: M: schmale Ausführung F: breite Ausführung														
	Größe: 15, 20, 25, 30, 35, 45, 55														
	U: Schiene von unten verschraubbar (optional)														
	Prod	ukt Aı	usführ	ung:	ARC	HRC	Z/ERC	(sieh	e Grö	ßenta	abellen)				

^{* (}verfügbar für Gr. 15, 20, 25, 30 und 35)

Code für Optionen (Die Bedeutung von Suffixzeichen)

G	: bestimmtes Schmiermittel
I	: mit Prüfbericht
S	: besondere Geradheit Schiene
В	: Spezialbearbeigung Wagen
BL	: mit Faltenbalg auf der Schiene
SN	: mit Vorsatzdichtung NBR
BR	: schwarzverchromt beschichtet

J : zusammengesetzte Schiene

(nur Schiene)

BB: schwarzverchromt beschichtet (nur Wagen)

BRB: schwarzverchromt beschichtet (Wagen + Schiene)

SB: mit Edelstahlkugeln
NRB: Nickelbeschichtung (Wagen+Schiene)

R : Spezialbearbeitung Schiene

VD : kundenspezifische Vorspannung

OA: Wagen mit vormontierten Schmiernippeln

DE: Anschlagkante von Wagen und Schiene auf der gegenüberliegenden Seite

CR: hellverchromt beschichtet (nur Schiene)

CB: hellverchromt beschichtet (nur Wagen)

CRB: hellverchromt beschichtet (Wagen + Schiene)

NR: Nickelbeschichtung (nur Schiene)

SG: Wagen mit seitlichen Schmieranschlüssen

MC: mit Metall-Kappen

MPC : mit Metall-Plastik-Kappen

PC: mit Plastik-Kappen

RR: Raydentbeschichtung (nur Schiene)

RB: Raydentbeschichtung (nur Wagen)

RRB: Raydentbeschichtung

NB: Nickelbeschichtung (nur Wagen)

Bestellinformationen

Bezeichnung für austauschbare Führungswagen und Führungsschienen:

Ist nur für die Genauigkeitsklassen N, H und P möglich.

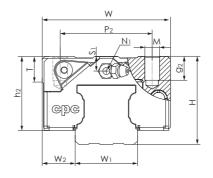
Ве	estell-Coc	de				Führung	swagen				
ARC	30	М	L	-S	Z	С	-V1	-H	-G	-Block	
											Führungswagen
										Code für	Optionen
									Genauig	ıkeitsklass	e: N, H, P
							,	Vorspani	nungsklas	sse: VC, V	/0, V1, V2
							C: Ausfül	nrung mit	Kugelke	tte*	
						Z: Ausfüh	rung mit	integriert	er Schmi	ereinheit	**
					Dichtung	ıs-Type:					
							ntakt aut				
					5: mit sta	rkerem Ko	ontakt au	of der Scr	niene		
				Wagen-L	.änge:						
				L: lange /	Ausführur	ng N: nc	ormale Au	usführung	g S: kurz	e Ausführ	rung
			Wagen-E	Breite: N	1: schmal	e Ausfühi	rung F: I	Flansch-A	Ausführun	ıg	
		Grösse: 1	5, 20, 25,	30, 35, 4	5, 55						
	Produkte	-Ausführu	ung: AR	C: kompo	akte Ausf	ührung	HRC/ERG	C: hohe	Ausführur	ng	

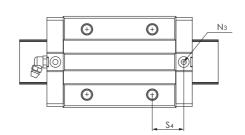
^{* (}verfügbar für Gr. 15, 20, 25, 30 und 35)

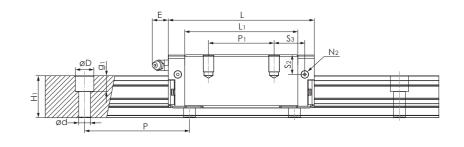
^{** (}verfügbar für Gr. 15, 20, 25, 30 und 35)

Bestell-Cod	de			Führung	sschiene			1
AR/HR	30	-N	-1520	-40	- 40	-J	-RAIL	
								Führungsschiene
							Code für C	Optionen
						Ende Loc	habstand ((mm)
				`	Anfang Loc	chabstand	(mm)	
				Schienen-L	änge (mm)			
			Genauigke	eitsklasse: N	, H, P			
		Grösse: 15,	20, 25, 30, 3	35, 45, 55				
	Produkte-A	usführung:						
	AR/HR: Sch							
	ARU/HRU: S	Schiene vor	n unten vers	schraubbar	<u> </u>			

Bestell-Beispiele:


Führungswagen: ARC25MN-SZ-V1-H-BLOCK

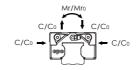

Führungsschiene: AR/HR25-H-1200-30-30-RAIL

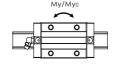

Bemerkung: Bitte kontaktieren Sie uns falls Sie eine Sonderbearbeitung benötigen.

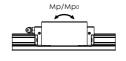
^{** (}verfügbar für Gr. 15, 20, 25, 30, 35 und 45)

ARC MS Serie

Modell		ageab- ungen nm)	Sch	Schienenabmessungen (mm) Wagenabmessungen (mm)													W	agena	bmessı	ungen	(mm)			ahlen N)	Statisc	he Mo (Nm)	mente	Gewi	chte	Modell		
	Н	W ₂	Wı	Hı	Р	Dxdxg1	W	L	Lı	h ₂	Pı	P ₂	Рз	Mxg ₂	Mı	T	N ₁	N ₂	N3	Е	S1	S ₂	S 3	S4	С	C ₀	Mro	Mp0	Муо	Wagen(g)	Schiene (g/m)	
ARC 15 MS	24	9.5	15	15	60	7.5x4.5x5.3	34	41.2	26	20.7	-	26	-	M4x7	-	6	M3x6.5	М3х6	P3	3.5	4.5	7.5	15.6	16.7	7.7	12.1	100	50	50	106	1290	ARC 15 MS
ARC 20 MS	28	11	20	20	60	9.5x6x8.5	42	49.2	32.2	23	-	32	-	M5x7	-	8	M3x7.5	M3x5.5	P4	10	4	7.4	19.1	19.8	12.5	19.3	205	100	100	170	2280	ARC 20 MS
ARC 25 MS	33	12.5	23	23	60	11x7x9	48	57.4	38.4	27	-	35	-	М6х9	-	8	M6x7.5	M3x6.5	P4	12	5	9.3	22.2	23.2	18.2	27.3	350	160	160	300	3020	ARC 25 MS
ARC 30 MS	42	16	28	27	80	14x9x12	60	68	44	35.2	-	40	-	M8x10	-	12	M6x8.5	M6x5	P5	12	7.5	12	27	26.7	23.3	33.1	520	230	230	560	4380	ARC 30 MS

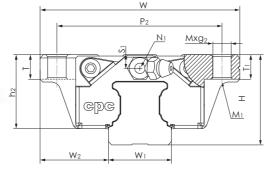

ARC MN Serie

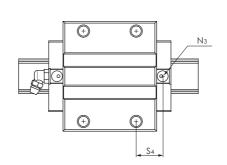

ARC 15 MN	24	9.5	15	15	60	7.5x4.5x5.3	34	55.5	40.3	20.7	26	26	-	M4x7	-	6	M3x6.5	М3х6	Р3	3.5	4.5	7.5	9.8	10.9	9.9	17.5	140	105	105	158	1290	ARC 15 MN
ARC 20 MN	28	11	20	20	60	9.5x6x8.5	42	69	52	23	32	32	-	M5x7	-	8	M3x7.5	M3x5.5	P4	10	4	7.4	13	13.7	17.1	30.0	325	230	230	266	2280	ARC 20 MN
ARC 25 MN	33	12.5	23	23	60	11x7x9	48	81.2	62.2	27	35	35	-	М6х9	-	8	M6x7.5	M3x6.5	P4	12	5	9.3	16.6	17.6	24.8	42.5	540	385	385	420	3020	ARC 25 MN
ARC 30 MN	42	16	28	27	80	14x9x12	60	95.5	71.5	35.2	40	40	-	M8x10	-	12	M6x8.5	M6x5	P5	12	7.5	12	20.8	20.5	32.8	53.7	845	565	565	800	4380	ARC 30 MN
ARC 35 MN	48	18	34	32	80	14x9x12	70	111.2	86.2	40.4	50	50	-	M8x13	-	14	M6x10	M6x7	P5	12	8	15	23.4	24.1	45.9	82.9	1700	1080	1080	1120	6790	ARC 35 MN
ARC 45 MN	60	20.5	45	39	105	20x14x17	86	135.5	102.5	50.7	60	60	-	M10x17	-	14	PT1/8x12.5	M6x10.5	P5	14	11.1	18.1	27.3	27.2	71.3	122.1	3200	1910	1910	2120	10530	ARC 45 MN
ARC 55 MN	70	23.5	53	45.7	120	24x16x20	100	168.5	126.5	58	75	75	-	M12x20	-	16	M6x10	M6x13	P5	12	13.5	23.5	34.8	33.8	128	186	4949	3278	3278	4200	14000	ARC 55 MN

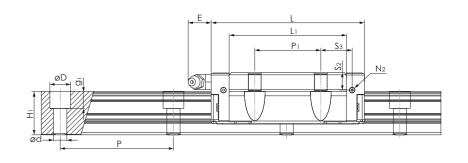

ARC ML Serie

ARC 15 ML	24	9.5	15	15	60	7.5x4.5x5.3	34	76.2	61	20.7	34	26	-	M4x7	-	6	M3x6.5	М3х6	P3	3.5	4.5	7.5	16.1	17.2	13.4	26.9	215	235	235	240	1290	ARC 15 ML
ARC 20 ML	28	11	20	20	60	9.5x6x8.5	42	87.2	70.2	23	45	32	-	M5x7	-	8	M3x7.5	M3x5.5	P4	10	4	7.4	15.6	16.3	20.4	38.5	415	390	390	330	2280	ARC 20 ML
ARC 30 ML	42	16	28	27	80	14x9x12	60	118	94	35.2	60	40	-	M8x10	-	12	M6x8.5	M6x5	P5	12	8.7	12	21.7	21.7	39.6	70.2	1105	950	950	1138	4380	ARC 30 ML
ARC 35 ML	48	18	34	32	80	14x9x12	70	136.6	111.6	40.4	72	50	-	M8x13	-	14	M6x10	M6x7	P5	12	8	15	25.1	25.8	54.7	106.5	2185	1755	1755	1536	6790	ARC 35 ML
ARC 45 ML	60	20.5	45	39	105	20x14x17	86	171.5	138.5	50.7	80	60	-	M10x17	-	14	PT1/8x12.5	M6x10.5	P5	14	11.1	18.1	35	35	89.5	169.1	4430	3460	3460	3160	10530	ARC 45 ML
ARC 55 ML	70	23.5	53	45.7	120	24x16x20	100	202	160	58	95	75	-	M12x20	-	16	M6x10	M6x13	P5	12	13.5	23.5	41.5	40.5	147	226	6472	5284	5284	5083	14000	ARC 55 ML

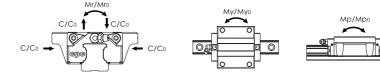
 $^{{\}it 1.\, Die\, aufgef\"uhrten\, Tragzahlen\, gelten\, nicht\, f\"ur\, Kugelkette-F\"uhrungen}$



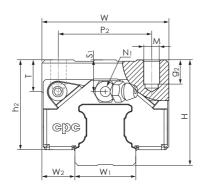

^{2.} N₂ = Schmierbohrung

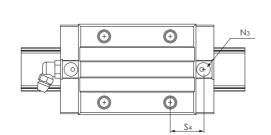

^{3.} N_3 = Wenn Schmierstelle genutzt wird mit O-Ring abdichten

^{4.} N_2 , N_3 Schmierstelle mit heißer Nadel durchstechen falls diese genutzt werden soll


ARC FS Serie

7 (ICC 13 30110																																	
Modell	Montage- abmessungen (mm)															Wo	genab	messur	ngen (r	nm)			ahlen N)	1	tatisch nente		Gewi	chte	Modell				
	Н	W ₂	W ₁	Hı	Р	Dxdxg1	W	L	Lı	h ₂	Pı	P ₂	Рз	Mxg2	Mı	T	T ₁	Nı	N ₂	N3	Е	S1	S ₂	S 3	S4	С	C ₀	Mro	Mp0	Муо	Wagen(g)	Schiene (g/m)	
ARC 15 FS	24	18.5	15	15	60	7.5x4.5x5.3	52	41.2	26	20.7	-	41	-	M5x7	M4	7	7	M3x6.5	М3х6	P3	3.5	4.5	7.5	15.6	16.7	7.7	12.1	100	50	50	132	1290	ARC 15 FS
ARC 20 FS	28	19.5	20	20	60	9.5x6x8.5	59	49.2	32.2	23	-	49	-	M6x10	M5	10	10	M3x7.5	M3x5.5	P4	10	4	7.4	19.1	19.8	12.5	19.3	205	100	100	210	2280	ARC 20 FS
ARC 25 FS	33	25	23	23	60	11x7x9	73	57.4	38.4	27	-	60	-	M8x12	M6	12	12	M6x7.5	M3x6.5	P4	12	5	9.3	22.2	23.2	18.2	27.3	350	160	160	345	3020	ARC 25 FS
ARC 30 FS	42	31	28	27	80	14x9x12	90	68	44	35.2	-	72	-	M10x12	M8	12	12	M6x8.5	M6x5	P5	12	7.5	12	27	26.8	23.3	33.1	520	230	230	750	4380	ARC 30 FS

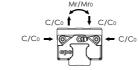

ARC FN Serie

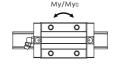

71100110																																	
ARC 15 FN	24	18.5	15	15	60	7.5x4.5x5.3	52	55.5	40.3	20.7	26	41	-	M5x7	M4	7	7	M3x6.5	М3х6	Р3	3.5	4.5	7.5	8.9	10.9	9.9	17.5	140	105	105	200	1290	ARC 15 FN
ARC 20 FN	28	19.5	20	20	60	9.5x6x8.5	59	69	52	23	32	49	-	M6x10	M5	10	10	M3x7.5	M3x5.5	P4	10	4	7.4	13	13.7	17.1	30.0	325	230	230	336	2280	ARC 20 FN
ARC 25 FN	33	25	23	23	60	11x7x9	73	81.2	62.2	27	35	60	-	M8x12	M6	12	12	M6x7.5	M3x6.5	P4	12	5	9.3	16.6	17.6	24.8	42.5	540	385	385	524	3020	ARC 25 FN
ARC 30 FN	42	31	28	27	80	14x9x12	90	95.5	71.5	35.2	40	72	-	M10x12	M8	12	12	M6x8.5	M6x5	P5	12	7.5	12	20.8	20.5	32.8	53.7	845	565	565	1200	4380	ARC 30 FN
ARC 35 FN	48	33	34	32	80	14x9x12	100	111.2	86.2	40.4	50	82	-	M10x12	M8	12	12	M6x10	M6x7	P5	12	8	15	23.4	24.1	45.9	82.9	1700	1080	1080	1580	6790	ARC 35 FN

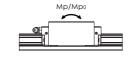
- 1. Die aufgeführten Tragzahlen gelten nicht für Kugelkette-Führungen
- 2. N₂ = Schmierbohrung
- 3. N₃ = Wenn Schmierstelle genutzt wird mit O-Ring abdichten
- $4.\ N_{2}\,, N_{3}\, Schmierstelle\ mit\ heißer\ Nadel\ durchstechen\ falls\ diese\ genutzt\ werden\ soll$

HRC MN Serie

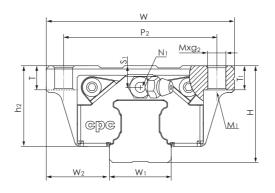
gen Schien	nenabr (mn	nessungen 1)					Wage	enabr	nessu	ngen (mi	m)				Wa	genab	messur	ngen (n	nm)		Tragz (K		l	tatische Ioment (Nm)		Gewi	chte	Modell
/2 W1 H	Hı P	Dxdxg1	W	L	Lı	h ₂	Pı	P ₂	Рз	Mxg2	Mı	Т	Nı	N ₂	N3	Е	S 1	S ₂	S 3	S4	С	C ₀	Mro	Mp0	Муо	Wagen(g)	Schiene (g/m)	
5 15 15	15 60	7.5x4.5x5.3	34	55.5	40.3	24.7	26	26	-	M4x7	-	6	M3x6.5	М3х6	P3	3.5	8.5	11.5	9.8	10.9	9.9	17.5	140	105	105	200	1290	HRC 15 MN
2 20 20	20 60	9.5x6x8.5	44	69	52	25	36	32	-	M5x8.5	-	8	M3x7.5	M3x5.5	P4	10	6	9.4	11	11.7	17.1	30.0	325	230	230	318	2280	HRC 20 MN
.5 23 23	23 60	11x7x9	48	81.2	62.2	34	35	35	-	М6х9	-	12	M6x7.5	M3x6.5	P4	12	12	16.3	16.6	17.6	24.8	42.5	540	385	385	578	3020	HRC 25 MN
6 28 27	27 80	14x9x12	60	95.5	71.5	38.4	40	40	-	M8x12	-	12	M6x8.5	M6x5	P5	12	10.5	15	20.8	20.5	32.8	53.7	845	565	565	896	4380	HRC 30 MN
8 34 32	32 80	14x9x12	70	111.2	86.2	47.4	50	50	-	M8x13	-	14	M6x10	M6x7	P5	12	15	22	23.4	24.1	45.9	82.9	1700	1080	1080	1430	6790	HRC 35 MN
.5 45 39	39 105	20x14x17	86	135.5	102.5	60.7	60	60	-	M10x20	-	14	PT1/8x12.5	M6x10.5	P5	14	21.1	28.1	27.3	27.3	71.3	122.1	3200	1910	1910	2794	10530	HRC 45 MN
6 28 27 8 34 32	23 60 27 80 32 80		11x7x9 14x9x12 14x9x12	11x7x9 48 14x9x12 60 14x9x12 70	11x7x9 48 81.2 14x9x12 60 95.5 14x9x12 70 111.2	11x7x9 48 81.2 62.2 14x9x12 60 95.5 71.5 14x9x12 70 111.2 86.2	11x7x9 48 81.2 62.2 34 14x9x12 60 95.5 71.5 38.4 14x9x12 70 111.2 86.2 47.4	11x7x9 48 81.2 62.2 34 35 14x9x12 60 95.5 71.5 38.4 40 14x9x12 70 111.2 86.2 47.4 50	11x7x9 48 81.2 62.2 34 35 35 14x9x12 60 95.5 71.5 38.4 40 40 14x9x12 70 111.2 86.2 47.4 50 50	11x7x9 48 81.2 62.2 34 35 35 - 14x9x12 60 95.5 71.5 38.4 40 40 - 14x9x12 70 111.2 86.2 47.4 50 50 -	11x7x9 48 81.2 62.2 34 35 35 - M6x9 14x9x12 60 95.5 71.5 38.4 40 40 - M8x12 14x9x12 70 111.2 86.2 47.4 50 50 - M8x13	11x7x9 48 81.2 62.2 34 35 35 - M6x9 - 14x9x12 60 95.5 71.5 38.4 40 40 - M8x12 - 14x9x12 70 111.2 86.2 47.4 50 50 - M8x13 -	11x7x9 48 81.2 62.2 34 35 35 - M6x9 - 12 14x9x12 60 95.5 71.5 38.4 40 40 - M8x12 - 12 14x9x12 70 111.2 86.2 47.4 50 50 - M8x13 - 14	11x7x9 48 81.2 62.2 34 35 35 - M6x9 - 12 M6x7.5 14x9x12 60 95.5 71.5 38.4 40 40 - M8x12 - 12 M6x8.5 14x9x12 70 111.2 86.2 47.4 50 50 - M8x13 - 14 M6x10	11x7x9 48 81.2 62.2 34 35 35 - M6x9 - 12 M6x7.5 M3x6.5 14x9x12 60 95.5 71.5 38.4 40 40 - M8x12 - 12 M6x8.5 M6x5 14x9x12 70 111.2 86.2 47.4 50 50 - M8x13 - 14 M6x10 M6x7	11x7x9 48 81.2 62.2 34 35 35 - M6x9 - 12 M6x7.5 M3x6.5 P4 14x9x12 60 95.5 71.5 38.4 40 40 - M8x12 - 12 M6x8.5 M6x5 P5 14x9x12 70 111.2 86.2 47.4 50 50 - M8x13 - 14 M6x10 M6x7 P5	11x7x9 48 81.2 62.2 34 35 35 - M6x9 - 12 M6x7.5 M3x6.5 P4 12 14x9x12 60 95.5 71.5 38.4 40 40 - M8x12 - 12 M6x8.5 M6x5 P5 12 14x9x12 70 111.2 86.2 47.4 50 50 - M8x13 - 14 M6x10 M6x7 P5 12	11x7x9 48 81.2 62.2 34 35 35 - M6x9 - 12 M6x7.5 M3x6.5 P4 12 12 14x9x12 60 95.5 71.5 38.4 40 40 - M8x12 - 12 M6x8.5 M6x5 P5 12 10.5 14x9x12 70 111.2 86.2 47.4 50 50 - M8x13 - 14 M6x10 M6x7 P5 12 15	11x7x9 48 81.2 62.2 34 35 35 - M6x9 - 12 M6x7.5 M3x6.5 P4 12 12 16.3 14x9x12 60 95.5 71.5 38.4 40 40 - M8x12 - 12 M6x8.5 M6x5 P5 12 10.5 15 14x9x12 70 111.2 86.2 47.4 50 50 - M8x13 - 14 M6x10 M6x7 P5 12 15 22	11x7x9 48 81.2 62.2 34 35 35 - M6x9 - 12 M6x7.5 M3x6.5 P4 12 12 16.3 16.6 14x9x12 60 95.5 71.5 38.4 40 40 - M8x12 - 12 M6x8.5 M6x5 P5 12 10.5 15 20.8 14x9x12 70 111.2 86.2 47.4 50 50 - M8x13 - 14 M6x10 M6x7 P5 12 15 22 23.4	11x7x9 48 81.2 62.2 34 35 35 - M6x9 - 12 M6x7.5 M3x6.5 P4 12 12 16.3 16.6 17.6 14x9x12 60 95.5 71.5 38.4 40 40 - M8x12 - 12 M6x8.5 M6x5 P5 12 10.5 15 20.8 20.5 14x9x12 70 111.2 86.2 47.4 50 50 - M8x13 - 14 M6x10 M6x7 P5 12 15 22 23.4 24.1	11x7x9 48 81.2 62.2 34 35 35 - M6x9 - 12 M6x7.5 M3x6.5 P4 12 12 16.3 16.6 17.6 24.8 14x9x12 60 95.5 71.5 38.4 40 40 - M8x12 - 12 M6x8.5 M6x5 P5 12 10.5 15 20.8 20.5 32.8 14x9x12 70 111.2 86.2 47.4 50 50 - M8x13 - 14 M6x10 M6x7 P5 12 15 22 23.4 24.1 45.9	11x7x9 48 81.2 62.2 34 35 35 - M6x9 - 12 M6x7.5 M3x6.5 P4 12 12 16.3 16.6 17.6 24.8 42.5 14x9x12 60 95.5 71.5 38.4 40 40 - M8x12 - 12 M6x8.5 M6x5 P5 12 10.5 15 20.8 20.5 32.8 53.7 14x9x12 70 111.2 86.2 47.4 50 50 - M8x13 - 14 M6x10 M6x7 P5 12 15 22 23.4 24.1 45.9 82.9	11x7x9 48 81.2 62.2 34 35 35 - M6x9 - 12 M6x7.5 M3x6.5 P4 12 12 16.3 16.6 17.6 24.8 42.5 540 14x9x12 60 95.5 71.5 38.4 40 40 - M8x12 - 12 M6x8.5 M6x5 P5 12 10.5 15 20.8 20.5 32.8 53.7 845 14x9x12 70 111.2 86.2 47.4 50 50 - M8x13 - 14 M6x10 M6x7 P5 12 15 22 23.4 24.1 45.9 82.9 1700	11x7x9 48 81.2 62.2 34 35 35 - M6x9 - 12 M6x7.5 M3x6.5 P4 12 12 16.3 16.6 17.6 24.8 42.5 540 385 14x9x12 60 95.5 71.5 38.4 40 40 - M8x12 - 12 M6x8.5 M6x5 P5 12 10.5 15 20.8 20.5 32.8 53.7 845 565 14x9x12 70 111.2 86.2 47.4 50 50 - M8x13 - 14 M6x10 M6x7 P5 12 15 22 23.4 24.1 45.9 82.9 1700 1080	11x7x9 48 81.2 62.2 34 35 35 - M6x9 - 12 M6x7.5 M3x6.5 P4 12 12 16.3 16.6 17.6 24.8 42.5 540 385 385 14x9x12 60 95.5 71.5 38.4 40 40 - M8x12 - 12 M6x8.5 M6x5 P5 12 10.5 15 20.8 20.5 32.8 53.7 845 565 565 14x9x12 70 111.2 86.2 47.4 50 50 - M8x13 - 14 M6x10 M6x7 P5 12 15 22 23.4 24.1 45.9 82.9 1700 1080 1080	11x7x9 48 81.2 62.2 34 35 35 - M6x9 - 12 M6x7.5 M3x6.5 P4 12 12 16.3 16.6 17.6 24.8 42.5 540 385 385 578 14x9x12 60 95.5 71.5 38.4 40 40 - M8x12 - 12 M6x8.5 M6x5 P5 12 10.5 15 20.8 20.5 32.8 53.7 845 565 565 896 14x9x12 70 111.2 86.2 47.4 50 50 - M8x13 - 14 M6x10 M6x7 P5 12 15 22 23.4 24.1 45.9 82.9 1700 1080 1080 1430	11x7x9 48 81.2 62.2 34 35 35 - M6x9 - 12 M6x7.5 M3x6.5 P4 12 12 16.3 16.6 17.6 24.8 42.5 540 385 385 578 3020 14x9x12 60 95.5 71.5 38.4 40 40 - M8x12 - 12 M6x8.5 M6x5 P5 12 10.5 15 20.8 20.5 32.8 53.7 845 565 565 896 4380 14x9x12 70 111.2 86.2 47.4 50 50 - M8x13 - 14 M6x10 M6x7 P5 12 15 22 23.4 24.1 45.9 82.9 1700 1080 1080 1430 6790

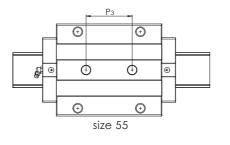

HRC ML Serie

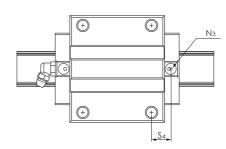

HRC 15 ML	28	9.5	15	15	60	7.5x4.5x5.3	34	76.2	61	24.7	26	26	-	M4x7	-	6	M3x6.5	М3х6	P3	3.5	8.5	11.5	20.1	21.2	13.4	26.9	215	235	235	300	1290	HRC 15 ML
HRC 20 ML	30	12	20	20	60	9.5x6x8.5	44	87.2	70.2	25	50	32	-	M5x8.5	-	8	M3x7.5	M3x5.5	P4	10	6	9.4	13.1	13.8	20.4	38.5	415	390	390	400	2280	HRC 20 ML
HRC 25 ML	40	12.5	23	23	60	11x7x9	48	105	86	34	50	35	-	М6х9	-	12	M6x7.5	M3x6.5	P4	12	12	16.3	21	22	30.7	57.7	735	710	710	685	3020	HRC 25 ML
HRC 30 ML	45	16	28	27	80	14x9x12	60	118	94	38.4	60	40	-	M8x12	-	12	M6x8.5	M6x5	P5	12	10.5	15	21.7	21.8	39.6	70.2	1105	950	950	1150	4380	HRC 30 ML
HRC 35 ML	55	18	34	32	80	14x9x12	70	136.6	111.6	47.4	72	50	-	M8x13	-	14	M6x10	M6x7	P5	12	15	22	25.1	25.8	54.7	106.5	2185	1755	1755	1953	6790	HRC 35 ML
HRC 45 ML	70	20.5	45	39	105	20x14x17	86	171.5	138.5	60.7	80	60	-	M10x20	-	14	PT1/8x12.5	M6x10.5	P5	14	21.1	28.1	35	35	89.5	169.1	4430	3460	3460	4060	10530	HRC 45 ML
HRC 55 ML	80	23.5	53	45.7	120	24x16x20	100	202	160	68	95	75	-	M12x25	-	16	M6x10	M6x13	P5	12	23.5	33.5	41.5	40.5	147	226	6472	5284	5284	6243	14000	HRC 55 ML

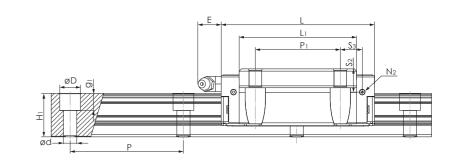

ERC Serie

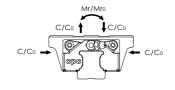
ERC 25 MS	36	12.5	23	23	60	11x7x9	48	57.4	38.4	30	-	35	-	М6х9	-	8	M6x7.5	M3x6.5	P4	12	8	12.3	22.2	23.2	18.2	27.3	350	160	160	315	3020	ERC 25 MS
ERC 25 MN	36	12.5	23	23	60	11x7x9	48	81.2	62.2	30	35	35	-	М6х9	-	8	M6x7.5	M3x6.5	P4	12	8	12.3	16.6	17.6	24.8	42.5	540	385	385	470	3020	ERC 25 MN
ERC 25 M L	36	12.5	23	23	60	11x7x9	48	105	86	30	50	35	-	М6х9	-	8	M6x7.5	M3x6.5	P4	12	8	12.3	21	22	30.7	57.7	735	710	710	610	3020	ERC 25 M L

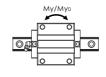

- 1. Die aufgeführten Tragzahlen gelten nicht für Kugelkette-Führungen
- 2. N₂ = Schmierbohrung
- 3. N_3 = Wenn Schmierstelle genutzt wird mit O-Ring abdichten
- 4. N_2 , N_3 Schmierstelle mit heißer Nadel durchstechen falls diese genutzt werden soll

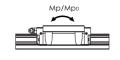






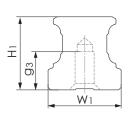

HRC FN Serie

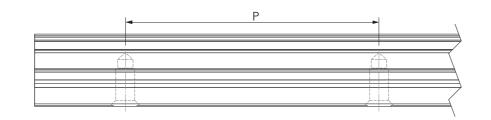

Modell	abme	ntage- essungen mm)	Schienenabmessungen (mm) Wagenabmessungen (mm)											W	'agena	ıbmess	ungen	(mm)			zahlen (N)		tatisch nente		Gew	ichte	Modell						
	Н	W ₂	W ₁	Hı	Р	Dxdxg1	W	L	Lı	h ₂	Pı	P ₂	Рз	Mxg2	Mı	T	Tı	N ₁	N ₂	N3	Е	S1	S ₂	S 3	S4	С	Co	Mro	Mp0	Муо	Wagen(g)	Schiene (g/m)	
HRC 15 FN	24	16	15	15	60	7.5x4.5x5.3	47	55.5	40.3	20.7	30	38	-	M5x7	M4	7	7	M3x6.5	М3х6	P3	3.5	4.5	7.5	7.8	8.9	9.9	17.5	140	105	105	190	1290	HRC 15 FN
HRC 20 FN	30	21.5	20	20	60	9.5x6x8.5	63	69	52	25	40	53	-	M6x10	M5	10	10	M3x7.5	M3x5.5	P4	10	6	9.4	9	9.7	17.1	30.0	325	230	230	396	2280	HRC 20 FN
HRC 25 FN	36	23.5	23	23	60	11x7x9	70	81.2	62.2	30	45	57	-	M8x12	M6	12	12	M6x7.5	M3x6.5	P4	12	8	12.3	11.6	12.6	24.8	42.5	540	385	385	626	3020	HRC 25 FN
HRC 30 FN	42	31	28	27	80	14x9x12	90	95.5	71.5	35.2	52	72	-	M10x12	2 M8	12	12	M6x8.5	M6x5	P5	12	7.5	12	14.8	14.5	32.8	53.7	845	565	565	1110	4380	HRC 30 FN
HRC 35 FN	48	33	34	32	80	14x9x12	100	111.2	86.2	40.4	62	82	-	M10x12	2 M8	12	12	M6x10	M6x7	P5	12	8	15	17.4	18.1	45.9	82.9	1700	1080	1080	1550	6790	HRC 35 FN
HRC 45 FN	60	37.5	45	39	105	20x14x17	120	135.5	102.5	50.7	80	100	-	M12x1	5 M10	15	15	PT1/8x12.5	M6x10.5	P5	14	11.1	18.1	17.3	17.3	71.3	122.1	3200	1910	1910	2747	10530	HRC 45 FN
HRC 55 FN	70	43.5	53	45.7	120	24x16x20	140	168.5	126.5	58	95	116	70	M14x18	M12	18	18	M6x10	M6x13	P5	12	13.5	23.5	24.8	23.8	128	186	4949	3278	3278	5440	14000	HRC 55 FN


HRC FL Serie

HRC 20 FL	30	21.5	20	20	60	9.5x6x8.5	63	87.2	70.2	25	40	53	-	M5x7	M5	7	7	M3x7.5	M3x5.5	P4	10	6	9.4	18.1	18.8	20.4	38.5	415	390	390	504	2280	HRC 20 FL
HRC 25 FL	36	23.5	23	23	60	11x7x9	70	105	86	30	45	57	-	M6x10	M6	10	10	M6x7.5	M3x6.5	P4	12	8	12.3	23.5	24.5	30.7	57.5	735	710	710	870	3020	HRC 25 FL
HRC 30 FL	42	31	28	27	80	14x9x12	90	118	94	35.2	52	72	1	M8x12	M8	12	12	M6x8.5	M6x5	P5	12	7.5	12	25.7	25.8	39.6	70.2	1105	950	950	1385	4380	HRC 30 FL
HRC 35 FL	48	33	34	32	80	14x9x12	100	136.6	111.6	40.4	62	82	-	M10x12	M8	12	12	M6x10	M6x7	P5	12	8	15	30.1	30.8	54.7	106.5	2185	1755	1755	2000	6790	HRC 35 FL
HRC 45 FL	60	37.5	45	39	105	20x14x17	120	171.5	138.5	50.7	80	100	ı	M10x12	M10	18	18	PT1/8x12.5	M6x10.5	P5	14	11.1	18.1	35	35	89.5	169.1	4430	3460	3460	4280	10530	HRC 45 FL
HRC 55 FL	70	43.5	53	45.7	120	24x16x20	140	202	160	58	95	116	70	M10x18	M12	18	18	M6x10	M6x13	P5	12	13.5	23.5	41.5	40.5	147	226	6472	5284	5284	6963	14000	HRC 55 FL

^{1.} Die aufgeführten Tragzahlen gelten nicht für Kugelkette-Führungen




^{2.} N₂ = Schmierbohrung

^{3.} N₃ = Wenn Schmierstelle genutzt wird mit O-Ring abdichten

^{4.} N_2 , N_3 Schmierstelle mit heißer Nadel durchstechen falls diese genutzt werden soll

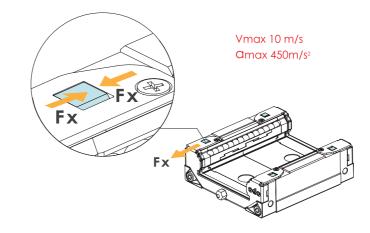
Maßtabelle

Schienen (von unten verschraubbar)

Modell	W1	Hı	Р	Мхдз	Lmax	Schiene(g/m)
ARU/HRU 15	15	15	60	M5x8	4000	1290
ARU/HRU 20	20	20	60	M6x10	4000	2280
ARU/HRU 25	23	23	60	M6x12	4000	3020
ARU/HRU 30	28	27	80	M8x15	4000	4380
ARU/HRU 35	34	32	80	M8x15	4000	6790
ARU/HRU 45	45	39	105	M12x19	4000	10530
ARU/HRU 55	53	45.7	120	M14x24	4000	14060

Schmiernippel Option

weitere Informationen auf Seite 43


14/	T		Grö	iße	Schmiemippel		Opti	on	
VVC	agen-Typ		Section	Side	Standard	gerader Adapter	Durchmesser	L-Typ Adapter	Durchmesser
ARC15	HRC15	-	МЗ	МЗ	A-M3	OA-M3-D4	-	ОВ-М3-М6	-
ARC20	HRC20	-	МЗ	МЗ	В-МЗ	OA-M3-D4	-	OB-M3-M6	-
ARC25	HRC25	ERC25	M6	МЗ	B-M6	OA-M6-M8	Ø4	OB-M6-M8	Ø4
						OA-M6-M8	Ø4	OB-M6-M8	Ø4
ARC30	HRC30	-	M6	M6	B-M6	OA-M6-PT1/8	-		
						OA-M6-G1/8	Ø6	OB-M6-PT1/8	-
						OA-M6-M8	Ø4	OB-M6-M8	_
ARC35	HRC35	-	M6	M6	B-M6	OA-M6-PT1/8	-		
						OA-M6-G1/8	Ø6	OB-M6-PT1/8	-
						OA-PT1/8-M8	Ø4	OB-PT1/8-M8	Ø4
ARC45	HRC45	-	PT1/8	M6	B-PT1/8	OA-PT1/8-PT1/8	-		~ .
						OA-PT1/8-G1/8	Ø6	OB-PT1/8-PT1/8	-
						OA-M6-M8	Ø4	OB-M6-M8	Ø4
ARC55	HRC55	-	M6	M6	B-M6	OA-M6-PT1/8	-		
						OA-M6-G1/8	Ø6	OB-M6-PT1/8	-

Die breite Schienenführung zeichnet sich durch eine erheblich höhere seitliche Steifigkeit aus. Wir empfehlen diese Linearführung insbesondere dann einzusetzen, wenn nur eine Führungsschiene als Linearführung verwendet wird. Durch die größere Breite der Schiene und des Wagens entsteht insgesamt eine kompaktere Führung.

Die Führungswagen sind verfügbar als:

- Führungswagen als Flanschausführung oder in schmaler Ausführung
- Mit Kugelkette erhältlich
- Mit integrierter Schmiereinheit verfügbar
- Diverse Vorspannungen (Spiel, Übergang, Vorspannung)
- Diverse Genauigkeitsklassen (N/H/P)

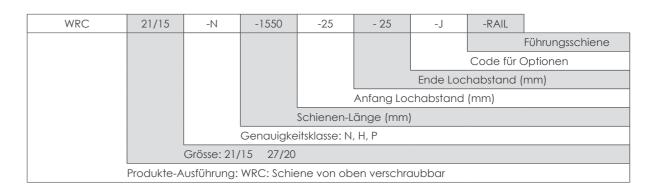
Bestellinformationen

Bestellcode Wagen und Schiene

WRC	U	21/15	М	N	-B	2	С	-V1	-P	-1480L	-20	-20	-11	-J
														Code für Optionen (siehe Seite 14)
														Anzahl Schienen auf einer Achse (= 1 Set)
													Ende	Lochabstand (mm)
												Anfa	ng Lo	ochabstand (mm)
											Schie	enenl	änge	e (mm)
										Genauigk	eitskl	asse	: N, F	I, P, SP, UP (siehe Seite 13)
									Vorsp	oannungs	klase	: VC,	V0, \	/1, V2 (siehe Seite 12)
							·	C: mi	it Κυς	gelkette (s	siehe	Seite	07)	
							Anza	hl Wo	agen	pro Schie	ne			
					[Dicht	ungst	тур:	B: le	ichter Kor	ntakt	auf c	lie Sc	chiene *
					Wag	enlär	nge:	N: no	ormo	ale Ausfühi	rung			
			١	Wage	enbre	ite	M: So	chmc	ale A	usführung	F: I	Flans	chau	sführung
			Wag	entyp	o: 21	/15 ,	27/20)						
	·	U: Schiene	von	unte	n ver	schro	dduk	ar (O	ptior	n)				
	Produ	ukt Typ: V	VRC:	Breite	e Stai	ndard	dführ	unge	n					

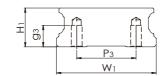
^{*} nur mit B-Dichtung verfügbar

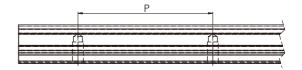
Bezeichnung für austauschbare Führungswagen und Führungsschienen:


Ist nur für die Genauigkeitsklassen N/ H und P möglich.

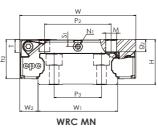
Bestellcode Wagen

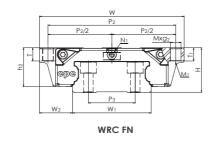
Ве	estell-Coc	de				Führung	ıswagen				
WRC	21/15	М	N	- B	Z	С	- V1	- H	- G	-Block	
											Führungswagen
										Code für	Optionen
									Genauig	gkeitsklass	e: N, H, P
								Vorspani	nungskla	sse: VC, V	/0, V1, V2
							C: Ausfül	nrung mit	Kugelke	tte (Optio	on)
						Z: Ausfüh	rung mit	integ. Sc	hmierein	heit (Opti	ion)
					Dichtung	ıs-Typ:					
					B: leichte	er Kontak	t auf die S	Schiene *			
				Wagen-L	änge.						
				0	0	ng N:nd	ormale Au	usführung	g S: kurz	e Ausführ	rung
			Wagen-E	Breite: N	1: schmal	e Ausfüh	rung F: I	Flansch-A	Ausführun	ng	
		Grösse: 2	21/15 2	7/20							
	Produkte	-Ausführu	ung: WR	C: Breite	Standard	d Ausführ	ung				

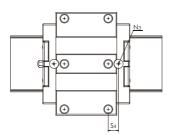

^{*} nur mit B-Dichtung verfügbar

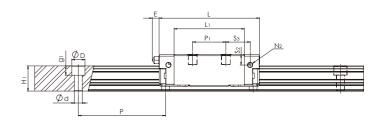

Bestell Code Schiene

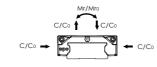
Maßtabelle


WRU Serie Schiene (von unten verschraubbar)

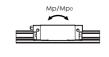





Modell	W ₁	H1	Р	P3	Мхдз	Lmax	Schiene (g/m)
WRU 21/15	37	14.4	50	22	M4x8	4000	3596
WRU 27/20	42	18.5	60	24	M5x7.5	4000	5259

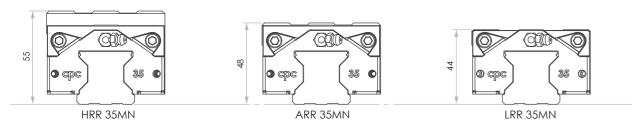

WRC Serie

	Montage-abmessungen Schienenabmessungen (mm) Wagenabmessungen (mm) Nodell											Wag	genab	messu	ıngen	(mm)		Tro	agzahle (KN)	en		tatische nente (Gew	ichte									
Modell	Н	W ₂	W ₁	Hı	Р	Рз	Dxdxgı	W	L	Lı	h2	Pı	P ₂	Mxg ₂	Mı	Т	Tı	N ₁	N ₂	N ₃	Е	Sı	S ₂	\$3	S4		50km	C ₀	Mro	Мро	Муо	Wagen (g)	Schiene (g/m)	Modell
WRC 21/15 MN	21	8.5	37	14.4	50	22	7.5x4.5x5.3	54	57.5	40.3	18.3	19	31	М5х5	-	6	-	МЗ	МЗхЗ	Р3	3.5	3.3	6.1	13.9	11.9	9.9	12.5	17.5	315	105	105	160	3596	WRC 21/15 MN
WRC 21/15 FN	21	15.5	37	14.4	50	22	7.5x4.5x5.3	68	57.5	40.3	18.3	29	60	M5x6	M4	6	6	МЗ	МЗхЗ	P3	3.5	3.3	6.1	8.9	6.9	9.9	12.5	17.5	315	105	105	198	3596	WRC 21/15 FN
WRC 27/20 MN	27	10	42	18.5	60	24	7.5x4.5x5.3	62	70	52	23.5	32	46	М6х6	-	10	-	МЗ	М3х4	P4	3.5	4.5	8	13.2	11.5	17.1	21.5	30	634	230	230	320	5259	WRC 27/20 MN
WRC 27/20 FN	27	19	42	18.5	60	24	7.5x4.5x5.3	80	70	52	23.5	40	70	M6x9	M5	9	9	МЗ	М3х4	P4	3.5	4.5	8	9.2	7.5	17.1	21.5	30	634	230	230	553	5259	WRC 27/20 FN

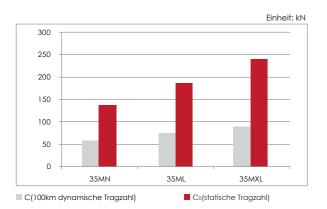

Die oben aufgeführten Tragzahlen und statischen Momente sind berechnet nach der Norm: ISO 14728-Standard. Die dynamische Tragzahl C ist die in Wirkung und Größe konstante Belastung, die 90 % einer Gruppe gleicher Linearführungen unter identischen Bedingungen während einer nominellen Lebensdauer von 100 km aufnehmen kann. Sofern der Hersteller seine Tragzahlen auf einer nominellen Lebensdauer von 50 km berechnet hat, können unsere Tragzahlen mit dem Faktor 1,26 multipliziert werden, zum Tragzahlen-Vergleich.

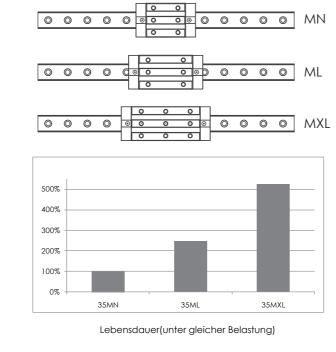
WRC...C Serie mit Kugelkette

		tage- ssungen nm)	Schi	enen	abme	essun	gen (mm)				V	Vager	nabm	essunge	en (m	m)				Wa	genab	messu	ıngen	(mm)		Tro	agzahle (KN)	en		tatische nente (Gew	ichte	
Modell	Н	W ₂	W ₁	Hı	Р	Рз	Dxdx91	W	L	Lı	h2	Pı	P ₂	Mx92	Mı	T	Tı	Nı	N ₂	N ₃	Е	S1	S ₂	S 3	S4	Cc 100km	age 50km	- Co	Mro	Мро	Муо	Wagen (g)	Schiene (g/m)	Modell
WRC 21/15 MNC	21	8.5	37	14.4	50	22	7.5x4.5x5.3	54	57.5	40.3	18.3	19	31	M5x5	-	6	1	МЗ	м3х3	РЗ	3.5	3.3	6.1	13.9	11.9	11.8	14.9	16.2	295	95	95	159	3596	WRC 21/15 MNC
WRC 21/15 FNC	21	15.5	37	14.4	50	22	7.5x4.5x5.3	68	57.5	40.3	18.3	29	60	M5x6	M4	6	6	МЗ	МЗхЗ	P3	3.5	3.3	6.1	8.9	6.9	11.8	14.9	16.2	295	95	95	197.5	3596	WRC 21/15 FNC
WRC 27/20 MNC	27	10	42	18.5	60	24	7.5x4.5x5.3	62	70	52	23.5	32	46	М6х6	-	10	-	МЗ	М3х4	P4	3.5	4.5	8	13.2	11.5	22.3	28.1	25.7	535	200	200	318	5259	WRC 27/20 MNC
WRC 27/20 FNC	27	19	42	18.5	60	24	7.5x4.5x5.3	80	70	52	23.5	40	70	M6x9	M5	9	9	МЗ	М3х4	P4	3.5	4.5	8	9.2	7.5	22.3	28.1	25.7	535	200	200	550	5259	WRC 27/20 FNC


Der dynamische Tragzahlwert mit Kugelkette Ccage ist der Messwert. (siehe Seite 08) Die oben genannten statischen Belastungen und statischen Momente wurden entsprechend ISO 14728-Standard kalkuliert.

Produktübersicht


LRR Extrem niedriges Profil


Im Vergleich zu anderen Standards der Branche wird durch den Aufbau der **cpc** Rollenführungen ein niedriger Schwerpunkt bei gleichzeitig kompakten Bauraum möglich. Die Laufwagen sind besonders geeignet für Anwendungen, bei denen externe Drehmomente vorhanden sind und hohe Trägheitskräfte kompensiert weden müssen. ARR, HRR und LRR Wagen haben identische Tragzahlen und damit eine identische Lebensdauererwartung.

MXL Extra langer Wagen

Der MXL Wagen ist im Vergleich zum ML Wagen länger und hat dadurch eine höhere Tragzahl, Steifigkeit und bessere Schlagreduzierung. Er ist dadurch besonders geeignet für den Einsatz in Werkzeugmaschinen, welche Präzisionsführungen mit sehr hoher Steifigkeit und Genauigkeit erfordern.

Zusatzinformationen

Kette für Geräuschreduzierung (Option)

Die Rollenkette verringert Laufgeräuche und verbessert die Laufeigenschaften. Die Kette zwischen den Rollen kann den Ölfim kontinuierlich aufnehmen und begünstigt somit den Schmiereffekt.

(mehr Informationen finden Sie auf Seite 07)

Komplettabdichtung (Standard)

Alle Wagen sind mit Enddichtungen, unteren Dichtungen und inneren Dichtungen ausgestattet und verhindern somit das Eindringen von Fremdkörpern in den Wagen und das Austreten von Schmiermitteln aus dem Wagen.

(mehr Informationen finden Sie auf Seite 03)

Verstärktes Niro-Stirnblech (Standard)

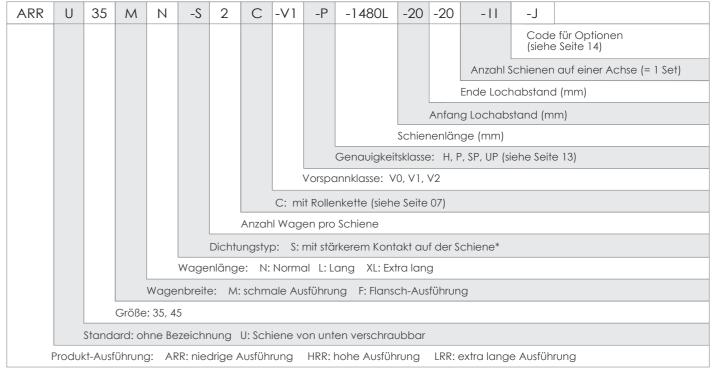
Das verstärkte Niro-Stirnblech in L-geformtem Design ist am Wagen mit End- und Bodenschrauben befestigt. Die Unterseite des Laufwagenkörpers ist mit einem integrierten Gewinde versehen, in dem die Verstärkungsplatte fest verschraubt werden kann, um Risse an Plastikteilen und somit Beschädigungen am Wagen zu vermeiden.

(mehr Informationen finden Sie auf Seite 06)

Lochabdeckung (Standard)

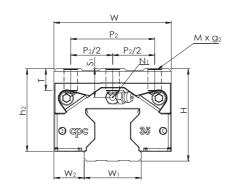
Metall-Plastik-Kappen verbessern den Reibwiderstand unter harten Einsatzbedingungen. Die Kappen sind auf der Unterseite mit einem Kunststoff versehen. Dieser stabilisiert die Kappe. Durch das spezielle Design kann die Kappe sehr schnell und einfach eingesetzt werden. Die Kappe schützt die Schiene und den Wagen vor ein Eindringen von Fremdkörpern.

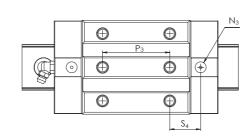
(mehr Informationen finden Sie auf Seite 10)

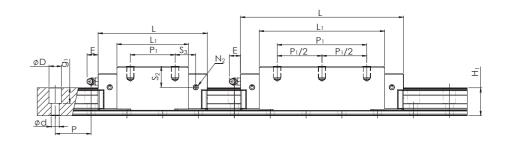

NBR Vorsatzdichtung (Option)

Die zusätzliche Dichtungsvariante wird in Bereichen mit viel Verschmutzung und Feinstaub eingesetzt, wie z.B. in der Holzbearbeitungsindustrie, Glasbearbeitungsindustrie und Papierindustrie. Die Außenseite der Dichtung ist mit einem Edelstahlabstreifer versehen und der Abstand zwischen Innnenkontur und Schienenkontur beträgt nur 0.2~0.3mm. Dies verhindert, dass Fremdkörper sich ansammeln, eindringen und die Gummidichtung beschädigen.


(mehr Informationen finden Sie auf Seite 09)


Bestellinformationen

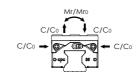

Bestell-Code



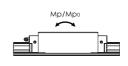
* nur mit S-Dichtung verfügbar

ARR MN/ML/MXL Serie

		ntage- essunger			abm((mm)	essungen				1	Wage	enabm	nesun	gen (r	nm)					Wage	enabm	essur	ngen	(mm)			Tragzahle (KN)	en	Statisc	che Mor (Nm)	mente	Gew	ichte	
Modell	Н	W ₂	W1	Hı	Р	Dxdxg1	W	L	Lı	h2	Pı	P 1/2	P ₂	P 2/2	Рз	Mxg ₂	Mı	T	Nı	N2	N3	Е	S1	S ₂	S 3	S ₄	Ciso 100km	Co	Mro	Мро	Муо	Wagen (g)	Schiene (g/m)	Modell
ARR 35MN	48	18	34	31	40	14x9x17	70	122	84	42	50	-	50	25	50	M8x13	-	13	M6x12	M6x8	P5	12	10	16.4	25	25	57	154	2742	1946	1946	1200	5740	ARR 35MN
ARR 35ML	48	18	34	31	40	14x9x17	70	147.5	109.5	42	72	-	50	25	72	M8x13	-	13	M6x12	M6x8	P5	12	10	16.4	26.7	26.7	68.9	196	3525	3226	3226	1750	5740	ARR 35ML

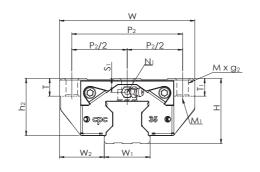

HRR MN/ML/MXL Serie

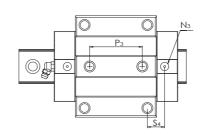
HRR 35MN	55	18	34	31	40	14x9x17	70	122	84	49	50	-	50	25	50	M8x16	-	13	M6x12	M6x8	P5	12	17	23.4	25	25	57	154	2742	1946	1946	1720	5740	HRR 35MN
HRR 35ML	55	18	34	31	40	14x9x17	70	147.5	109.5	49	72	-	50	25	72	M8x16	-	13	M6x12	M6x8	P5	12	17	23.4	26.7	26.7	68.9	196	3525	3226	3226	2100	5740	HRR 35ML
HRR 35MXL	55	18	34	31	40	14x9x17	70	177.5	139.5	49	100	50	50	25	100	M8x16	-	13	M6x12	M6x8	P5	12	17	23.4	27.7	27.7	82	245	4439	5111	5111	2700	5740	HRR 35MXL

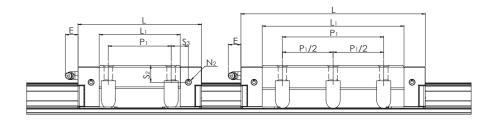

LRR MN/ML/MXL Serie

LRR 35MN	1 44	18	34	31	40	14x9x17	70	122	84	38	50	-	50	25	50	M8x9	-	9	M6x12	M6x8	P5	12	6	12.4	25	25	57	154	2742	1946	1946	1100	5740	LRR 35MN
LRR 35MI	_ 44	18	34	31	40	14x9x17	70	147.5	109.5	38	72	-	50	25	72	M8x9	-	9	M6x12	M6x8	P5	12	6	12.4	26.7	26.7	68.9	196	3525	3226	3226	1500	5740	LRR 35ML
LRR 35MXI	_ 44	18	34	31	40	14x9x17	70	177.5	139.5	38	100	50	50	25	100	M8x9	-	9	M6x12	M6x8	P5	12	6	12.4	27.7	27.7	82	245	4439	5111	5111	1900	5740	LRR 35MXL

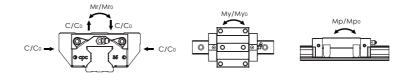
^{1.} Die aufgeführten Tragzahlen gelten nicht für Rollenkettenführungen




^{2.} N₂ = Schmierbohrung


^{3.} N₃ = Wenn Schmierstelle genutzt wird mit O-Ring abdichten

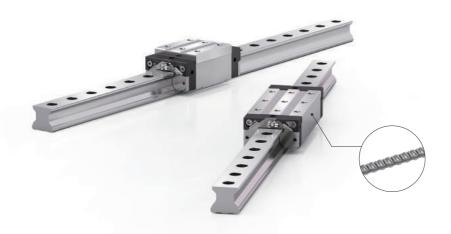
^{4.} N₂ ,N₃ Schmierstelle mit heißer Nadel durchstechen falls diese genutzt werden soll

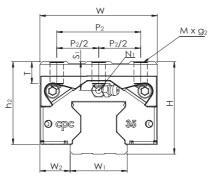

HRR FN/FL/FXL Serie

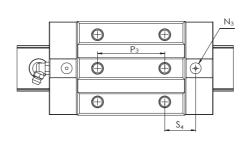
	abmes	ntage- ssungen nm)	Schie		abme (mm)	essungen					Wo	agen	abme	essun	gen (mm)					Wage	enabn	nessur	ngen	(mm)			Tragzahle (KN)	en	1	atisch nente		Gew	richte	
Modell	Н	W ₂	W ₁	Hı	Р	Dxdxgı	W	L	Lı	h ₂	Pı	P1/2	P ₂	P ₂ /2	Рз	Mxg ₂	Mı	Т	Tı	Nı	N ₂	N ₃	Е	S ₁	S ₂	S 3	S4	Ciso 100km	Co	Mro	Мро	Муо	Wagen (g)	Schiene (g/m)	Modell
HRR 35FN	48	33	34	31	40	14x9x17	100	122	84	42	62	-	82	41	52	M10x13	M8	13	13	M6x12	M6x8	P5	12	10	16.4	19	19	57	154	2742	1946	1946	1700	5740	HRR 35FN
HRR 35FL	48	33	34	31	40	14x9x17	100	147.5	109.5	42	62	-	82	41	52	M10x13	M8	13	13	M6x12	M6x8	P5	12	10	16.4	31.7	31.7	68.9	196	3525	3226	3226	2400	5740	HRR 35FL
HRR 35FXL	48	33	34	31	40	14x9x17	100	177.5	139.5	42	100	50	82	41	100	M10x13	M8	13	13	M6x12	M6x8	P5	12	10	16.4	27.7	27.7	82	245	4439	5111	5111	3100	5740	HRR 35FXL

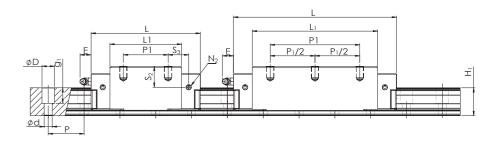
LRR FN/FL/FXL Serie

LRR 35FN	44	33	34	31	40	14x9x17	100	122	84	38	62	-	82	41	52	M10x9	M8	9	9	M6x12	M6x8	P5	12	6	12.4	19	19	57	154	2742	1946	1946	1550	5740	LRR 35FN
LRR 35FL	44	33	34	31	40	14x9x17	100	147.5	109.5	38	62	-	82	41	52	M10x9	M8	9	9	M6x12	M6x8	P5	12	6	12.4	31.7	31.7	68.9	196	3525	3226	3226	2200	5740	LRR 35FL
LRR 35FXL	44	33	34	31	40	14x9x17	100	177.5	139.5	38	100	50	82	41	100	M10x9	M8	9	9	M6x12	M6x8	P5	12	6	12.4	27.7	27.7	82	245	4439	5111	5111	2800	5740	LRR 35FXL


^{1.} Die aufgeführten Tragzahlen gelten nicht für Rollenkettenführungen



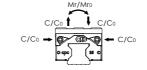

^{2.} N₂ = Schmierbohrung


^{3.} N₃ = Wenn Schmierstelle genutzt wird mit O-Ring abdichten

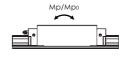
^{4.} N₂ ,N₃ Schmierstelle mit heißer Nadel durchstechen falls diese genutzt werden soll

ARR MN/ML/MXL...C Serie (mit Rollenkette)

		ntage- essunger	Sc	hiene	nabn (mm	nessugen)				٧	Wage	nabm	iessun	igen (i	mm)					Wage	nabm	essug	gnen	(mm)			Tragzahle (KN)	∍n	1	ische nente	(Nm)	Gew	ichte	
Modell	Н	W ₂	W1	Hı	Р	Dxdxg1	W	L	Lı	h2	Pı	P1/2	P ₂	P ₂ /2	Рз	Mxg2	Mı	T	Nı	N2	N3	Е	Sı	S 2	S 3	S4	C _{cage} 100km	C ₀	Mro	Мро	Муо	Wagen (g)	Schiene (g/m)	Modell
ARR 35MN	48	18	34	31	40	14x9x17	70	122	84	42	50	-	50	25	50	M8x13	-	13	M6x12	M6x8	P5	12	10	16.4	25	25	71.3	133	2350	1710	1710	1200	5800	ARR 35MN
ARR 35ML	48	18	34	31	40	14x9x17	70	147.5	109.5	42	72	-	50	25	72	M8x13	-	13	M6x12	M6x8	P5	12	10	16.4	26.7	26.7	86.1	175	3133	2881	2881	1750	5850	ARR 35ML

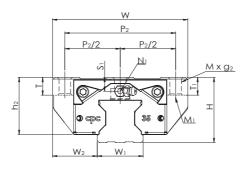

HRR MN/ML/MXL...C Serie (mit Rollenkette)

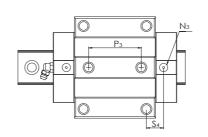
HRR 35MN	55	18	34	31	40	14x9x17	70	122	84	49	50	-	50	25	50	M8x16	_	13	M6x12	M6x8	P5	12	17	23.4	25	25	71.3	133	2350	1710	1710	1720	5721	HRR 35MN
HRR 35ML	55	18	34	31	40	14x9x17		147.5	109.5	49	72	-	50	25	72	M8x16	-	13	M6x12	M6x8	P5	12	17	23.4	26.7	26.7	86.1	175	3133	2881	2881	2100	5850	HRR 35ML
HRR 35MXL	55	18	34	31	40	14x9x17	70	177.5	139.5	49	100	50	50	25	100	M8x16	-	13	M6x12	M6x8	P5	12	17	23.4	27.7	27.7	102.5	224	4047	4695	4695	2700	5850	HRR 35MXL

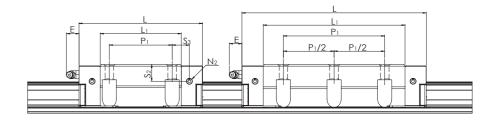

LRR MN/ML/MXL...C Serie (mit Rollenkette)

LRR 35MN	44	18	34	31	40	14x9x17	70	122	84	38	50	-	50	25	50	M8x9	-	9	M6x12	M6x8	P5	12	6	12.4	25	25	71.3	133	2350	1710	1710	1100	5850	LRR 35MN
LRR 35ML	44	18	34	31	40	14x9x17	70	147.5	109.5	38	72	-	50	25	72	M8x9	-	9	M6x12	M6x8	P5	12	6	12.4	26.7	26.7	86.1	175	3133	2881	2881	1500	5850	LRR 35ML
LRR 35MXL	44	18	34	31	40	14x9x17	70	177.5	139.5	38	100	50	50	25	100	M8x9	-	9	M6x12	M6x8	P5	12	6	12.4	27.7	27.7	102.5	224	4047	4695	4695	1900	5850	LRR 35MXL

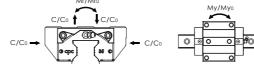
^{1.} N₂ = Schmierbohrung

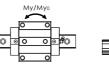



Der dynamische Tragzahlwert mit Rollenkette Ccage ist der Messwert. (siehe Seite 08) Die oben genannten statischen Belastungen und statischen Momente wurden entsprechend dem ISO 14728-Standard kalkuliert.


^{2.} N₃ = Wenn Schmierstelle genutzt wird mit O-Ring abdichten

 $^{3.\} N_2.N_3\,Schmierstelle\ mit\ heißer\ Nadel\ durchstechen\ falls\ diese\ genutzt\ werden\ soll$

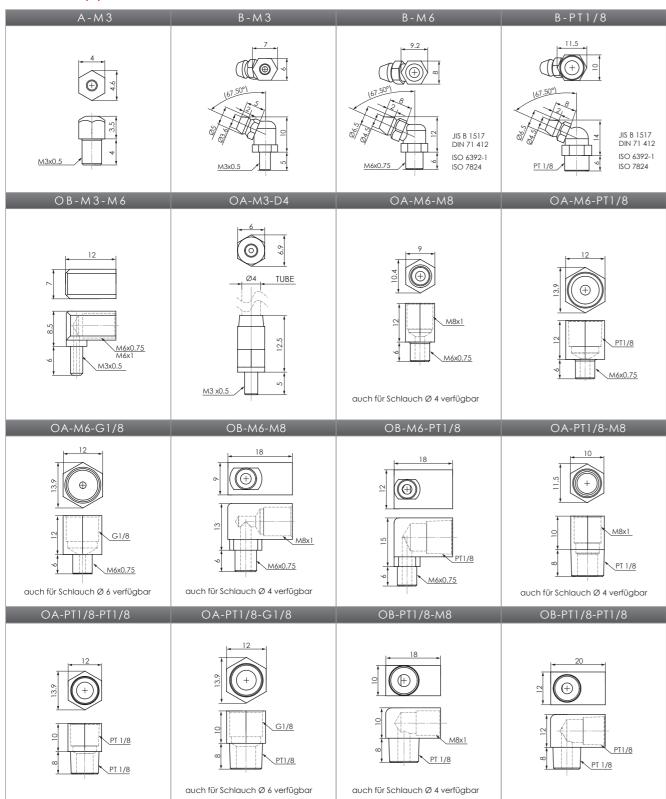

HRR FN/FL/FXL...C Serie (mit Rollenkette)


	abmes	itage- ssungen nm)	Schie		abme (mm)	essungen					Wo	agen	abme	essun	gen (mm)					Wage	enabn	nessur	ngen	(mm)			Tragzahle (KN)	en	1	atisch nente		Gew	ichte	
Modell	Н	W ₂	W1	Hı	Р	Dxdxgı	W	L	Lı	h ₂	Pı	P1/2	P ₂	P ₂ /2	Рз	Mxg ₂	Mı	Т	Tı	Nı	N2	Nз	Е	S1	S ₂	S 3	S4	C _{cage} 100km	Co	Mro	Мро	Муо	Wagen (g)	Schiene (g/m)	Modell
HRR 35FN	48	33	34	31	40	14x9x17	100	122	84	42	62	-	82	41	52	M10x13	M8	13	13	M6x12	M6x8	P5	12	10	16.4	19	19	71.3	133	2350	1710	1710	1700	5800	HRR 35FN
HRR 35FL	48	33	34	31	40	14x9x17	100	147.5	109.5	42	62	-	82	41	52	M10x13	M8	13	13	M6x12	M6x8	P5	12	10	16.4	31.7	31.7	86.1	175	3133	2881	2881	2400	5800	HRR 35FL
HRR 35FXL	48	33	34	31	40	14x9x17	100	177.5	139.5	42	100	50	82	41	100	M10x13	M8	13	13	M6x12	M6x8	P5	12	10	16.4	27.7	27.7	102.5	224	4047	4695	4695	3100	5800	HRR 35FXL

LRR FN/FL/FXL...C Serie (mit Rollenkette)

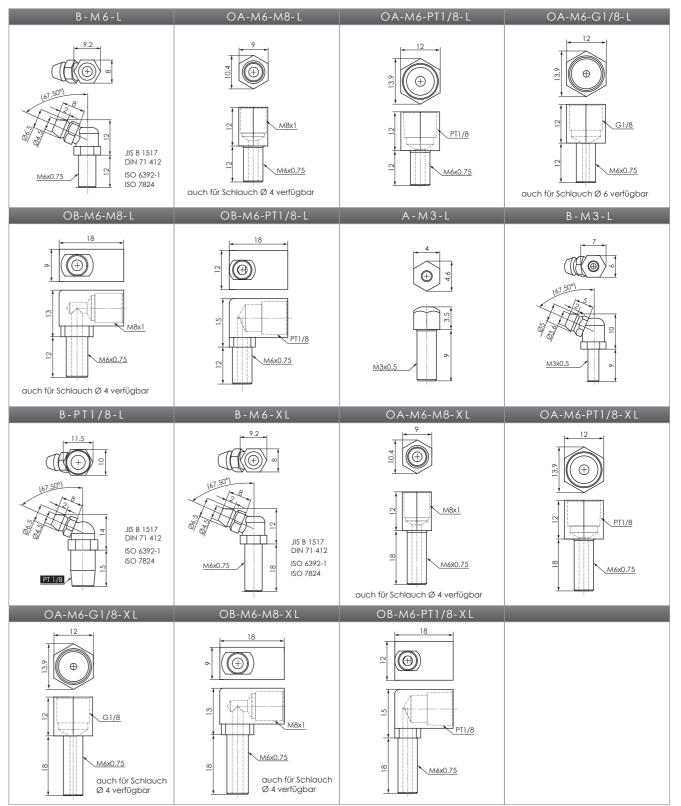
LRR 35FN	44	33	34	31	40	14x9x17	100	122	84	38	62	-	82	41	52	M10x9	M8	9	9	M6x12	M6x8	P5	12	6	12.4	19	19	71.3	133	2350	1710	1710	1550	5800	LRR 35FN
LRR 35FL	44	33	34	31	40	14x9x17	100	147.5	109.5	38	62	-	82	41	52	M10x9	M8	9	9	M6x12	M6x8	P5	12	6	12.4	31.7	31.7	86.1	175	3133	2881	2881	2200	5800	LRR 35FL
LRR 35FXL	44	33	34	31	40	14x9x17	100	177.5	139.5	38	100	50	82	41	100	M10x9	M8	9	9	M6x12	M6x8	P5	12	6	12.4	27.7	27.7	102.5	224	4047	4695	4695	2800	5800	LRR 35FXL

^{1.} N₂ = Schmierbohrung


Der dynamische Tragzahlwert mit Rollenkette Ccage entspricht dem Messwert. (siehe Seite 08) Die oben genannten statischen Belastungen und statischen Momente wurden entsprechend ISO 14728-Standard

^{2.} N₃ = Wenn Schmierstelle genutzt wird mit O-Ring abdichten

^{3.} N₂,N₃ Schmierstelle mit heißer Nadel durchstechen falls diese genutzt werden soll


Schmiernippel Optionen

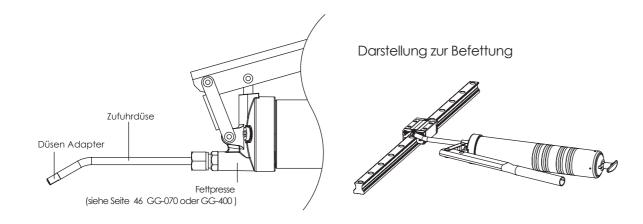
Schmiernippel

- L-Typ ist für Wagen mit Vorsatzdichtung (SN) und Rollenführungen
- XL-Typ ist für Rollenführung mit Vorsatzdichtung (SN)

Bemerkung: wenn Sie eine spezielle Bearbeitung benötigen, nehmen Sie bitte Kontakt zu uns auf

Adapter-Set und Schmierpresse

Das Schmier-Kit besteht aus einer Zufuhrdüse mit 3 verschiedenen Düsenadaptern. Diese Düsenadapter benötigt man für die unterschiedlichen Schmiernippelgrößen der verschiedenen Linearführungswagen.



Nippel Optionen

	-		Nipp	el Größe	Nippel Typ
	Тур		Sektion	Seite	Standard
ARC15	HRC15	-	M3	М3	A-M3
ARC20	HRC20	-	M3	М3	В-М3
ARC25	HRC25	ERC25	M6	М3	B-M6
ARC30	HRC30	-	M6	M6	B-M6
ARC35	HRC35	-	M6	M6	B-M6
ARC45	HRC45	-	PT1/8	M6	B-PT1/8
ARC55	HRC55	-	M6	M6	B-M6

GP-PT1/8-01 Schmier-Kit

Schmier-Kit mit Zufuhrdüse (GT-1/8-M5) und 3 verschiedenen Düsen Adaptern(GH-M5-MR, GH-M5-06, GH-M5-08). Die Zufuhrdüse kann an die üblichen manuellen oder pneumatischen Fettpressen angeschlossen werden. (mit PT1/8)

Zufuhrdüse

Тур	Abmessungen
GT-PT1/8-M5	725) PT 1/8

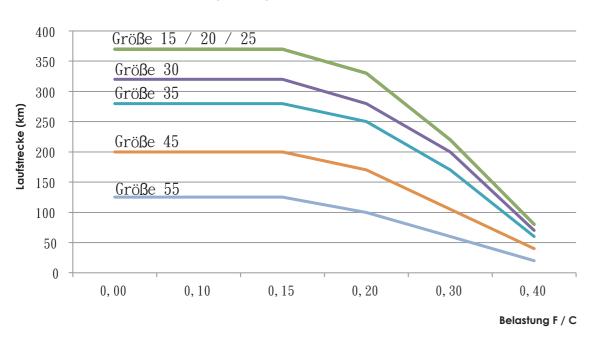
Düsenadapter

Einheit: mm

Тур	Abmessungen		Schmiernippel
GH-M5-MR	9 5 M5 x 0.5		turführungen der Größe MR-15W
GH-M5-06	10 5	A-M3 A-M3X	4 9 9 9 8 8
OTTIVIS 60	M5×0.5	B-M3 B-M3X	(67 50°) (67 50°) (67 50°) (67 50°)
GH-M5-08	10 5	B-M6 B-M6X	9.2 JIS B 1517 DIN 71 412 ISO 6392-1 ISO 7824
OH MO 55	M5 x 0.5	B-PT1/8 B-PT1/8X	JIS B 1517 DIN 71 412 ISO 6392-1 ISO 7824

Fettpresse

Optionen für die Fettpresse: GG-070 für 70g Schmierfett und GG-400 für 400g Schmierfett


Einheit: mm

Тур	Dimensionen	Eigenschaften
GG-070	PT1/8 (245)	1. Druck: 27 Mpa 2. Leistung: 0.5 - 0.7 cm³ / Hub 3. Fett: Geeignet für 70g Kartusche
GG-400	PT1/8 (350)	1. Druck: 62 Mpa 2. Leistung: 1.0 - 1.2 cm³ / Hub 3. Fett: Geeignet für 400g Kartusche

Schmierung

Schmierintervalle

Nachschmierintervalle für Standard-Kugelführung (ohne Schmiereinheit)

Nachschmiermengen für Standard - Führungswagen

	Standard - Fü	ihrungswagen	
Cräßo		Nachschmiermenge in mm³	
Größe	Type FS / MS	Type FN / MN	Type FL / ML
15	1500	1750	2000
20	1500	1750	2000
25	1800	2200	2600
30	2000	2500	3000
35	2000	2500	3000
45	3000	3500	4000
55	3500	4000	4500

Die Führungswagen werden mit einer Grundbefettung ausgeliefert um einen Notlauf sicherzustellen. Bei Inbetriebnahme müssen die Führungswagen nachbefettet werden.

Montagehinweise

Standard-Führungsschienen

Handling der Führungsschienen

Die Führungsschienen dürfen beim Auspacken nicht beschädigt werden. Insbesondere beim Entfernen der Verpackungsfolie besteht die Gefahr, dass durch scharfe Werkzeuge die Schiene zerkratzt werden könnten. Bei Bedarf können spezielle Folienöffner zur Verfügung gestellt werden. Obwohl das gehärtete Seitenprofil sehr unempfindlich ist, sollten die Führungsschienen um Beschädigungen zu vermeiden nicht gegeneinander gestoßen werden. Lange Führungsschienen sind mit ausgeglichener Gewichtsverteilung zu transportieren. Bei unsachgemäßem Handling besteht die Gefahr von Knicken und Rissen. Bitte während des Handlings Sicherheitsschuhe tragen.

Standard Führungswagen

Handling der Führungswagen

Führungswagen nicht fallen lassen. Beim Auspacken des Führungswagen darauf achten, dass die Transportsicherung bzw. Montagehilfe nicht aus den Führungswagen herausgleitet. Achtung Kugelverlust! Beschädigungen beim Auspacken unbedingt vermeiden. Es wird empfohlen mit Handschuhen und Schutzbrillen zu arbeiten und Sicherheitsschuhe zu tragen. Es muss auf äußerste Sauberkeit beim Handling mit den Führungswagen geachtet werden. Eine Verschmutzung der Kugeln und Laufbahnen hat erheblichen Einfluss auf Funktion und Lebensdauer.

Führungswagenmontage

Bei der Führungswagenmontage auf die Führungsschiene ist unbedingt die Transportsicherung bzw. Montagehilfe zu verwenden. Die Führungsschiene wird speziell angefast um die stirnseitigen Dichtungen des Führunswagens beim Aufschieben nicht zu beschädigen.

Wird der Führungswagen wieder von der Schiene demontiert, muss unbedingt die Transportsicherung bzw. Montagehilfe wieder zur Führungswagenaufnahme verwendet werden.

Verschraubung des Wagen

Die Befestigungsschraube für den Führungswagen mit nachfolgendem Drehmoment (Nm) anziehen.

Schraube	Schrauben 8.8	Schrauben 10.9	Schrauben 12.9
M4	2,7	3,8	4,6
M5	5,5	8	9,5
M6	9,5	13	16
M8	23	32	39
M10	46	64	77
M12	80	110	135
M14	125	180	215
M16	195	275	330

Empfhohlene Schraubenlänge

Größe	A1	A2	A3
15	M4x12	M5x12	M4x12
20	M5x16	M6x16	M5x16
25	M6x20	M8x20	M6x18
30	M8x25	M10x20	M8x20
35	M8x25	M10x25	M8x25
45	M10x30	M12x30	M10x30
55	M12x40	M14x40	M12x35

A1 = Flansch-Verschraubung von oben

A2 = Flansch-Verschraubung von unten

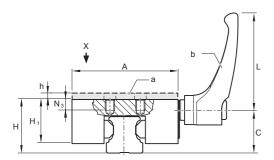
A3 = Standard-Wagen Verschraubung von oben

Montage der Kunststoffabdeckkappen

Bei Anwendung der Führungsschiene mit Schraubenkopfsenkung empfehlen wir, nach der Komplettmontage die Schraubenkopfsenkungen mit Kunststoffkappen zu verschließen. Die Kappen vermeiden das Eindringen von Schmutz über die Schraubenkopfsenkung und verbessern das Ablaufverhalten. Die Kunstststoffkappen sollten mit einer flachen Holzleiste bündig zur Schienenkopffäche eingesenkt werden.

Hand-Klemmelement MC

Hinweis:


Verwendbar für Kugelführungsschienen.

Montagehinweis:

Temperatureinsatzbereich 0 – 70 °C Auf eine steife Anschlusskonstruktion achten.

Größe	Artikel-Nr.	Artikelbezeichnung	Artikel-Nr. Distanzplatte (a)	Artikel- Bezeichnung Distanzplatte	Haltekraft ¹⁾ (N)	Anziehdreh- moment (Nm)
15	131A00001E	ARC/HRC-MC-15-01	131A00007E	HRC-MP-15-01	1200	4
20	131B00002E	ARC/HRC-MC-20-01	131B00008E	HRC-MP-20-01	1200	5
25	131C00003E	ARC/HRC/ERC-MC-25-01	131C00009E	ERC-MP-25-01	1200	7
23	13100003E	ARC/FRC/ERC-MC-23-01	131C00010E	HRC-MP-25-01	1200	7
30	131E00004E	ARC/HRC-MC-30-01	131E00011E	HRC-MP-30-01	2000	12
35	131F00005E	ARC/HRC-MC-35-01	131F00012E	HRC-MP-35-01	2000	12
45	131G00006E	ARC/HRC-MC-45-01	131G00013E	HRC-MP-45-01	2000	15

- a) Distanzplatte (Zubehör) b) Stellung des Handhebels veränderbar.

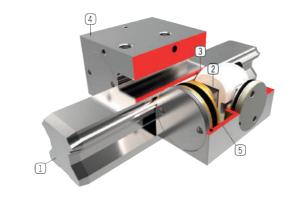
Größe		Maße (mm)							Ge-						
	Α	В	С	E ₁	E ₂	E ₃	H ³⁾	H ₁	h	L	L ₁	L ₂ ²⁾	N ₃	S ₂	wicht
															(Kg)
15	37	24	19,5	17,0	17,0	3,5	24	19	4	44	33,0	30,0	5	M4	0,10
20	60	24	24,5	15,0	15,0	4,5	28	23	2	44	33,0	30,0	6	M5	0,20
25	68	28	28,0	20,0	20,0	4,0	33	26	3/7	64	38,0	41,0	8	M6	0,28
30	70	39	34,0	22,0	22,0	8,5	42	33	3	64	38,0	41,5	8	M6	0,64
35	96	39	38,0	24,0	24,0	7,5	48	39	7	78	46,5	50,5	10	M8	0,87
45	92	44	47,0	26,0	26,0	9,0	60	44	10	78	46,5	50,5	14	M10	0,98

- 1) Prüfung durchgeführt mit öliger Führungsschiene
- 2) Handhebel ausgerastet
- 3) Höhenausgleich mit Distanzplatte (h) je nach Führungswagenhöhe

Pneumatische-Klemmelemente MK


Hinweis:

Verwendbar für cpc Kugelführungsschienen.


Montagehinweis:

Temperatureinsatzbereich 0 - 70 °C Auf eine steife Anschlusskonstruktion achten.

Max. Betriebsdruck: 8 bar

Gr.	Artikel-Nr.	Artikelbezeichnung	Artikel-Nr. Distanzplatte	Artikelbez. Distanzplatte	Höhe (h) Dist.platte (mm)	Verwendung Distanzplatte	Haltekraft (N) 4)
15	131A00025E	PN-KE-DB-MK1514D	131A00036E	PN-DP-PMK15-4	4	HRC MN/ML	400
20	131B00029E	PN-KE-DB-MK2014D	131B00037E	PN-DP-PMK20-2	2	HRC MN/ML FN/FL	650
25	131C00029E	PN-KE-DB-MK2514D	131C00038E	PN-PD-PMK25-4	4	HRC MN/ML	1200
30	131E00031E	PN-KE-DB-MK3005A	131E00039E	PN-DP-PMK30-3	3	HRC MN/ML	1750
35	131F00033E	PN-KE-DB-MK3514D	131F00040E	PN-DP-PMK35-7	7	HRC MN/ML	2000

- 1 Führungsschiene
- 2 Keilgetriebe
- 3 Klemmbalken
- 4 Gehäuse
- 5 Pneumatikkolben

A D
C↓ B

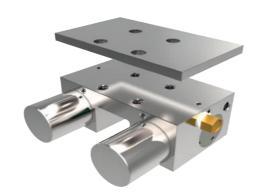
	Gr.	Maße (mm)							
	01.	В	Α	С	ges. Höhe D	Bohrabstand	Pneu. Anschluss	Bef. Gewinde	(kg)
→ 1 ↑	15	39	55	3,2	24	15	M5	4xM4-4,5 tief	2,287
ا ما[20	39	60	3	28	20	M5	4xM4-4,5 tief	3,081
Ĭĺ□	25	35	75	3,5	36	20	M5	4xM6 - 8 tief	3,434
	30	39	90	3,5	42	22	M5	4xM8 - 7 tief	5,973
	35	39	100	4	24	24	M5	4xM8 - 10 tief	8,594

- Prüfung durchgeführt mit öliger Führungsschiene
 Handhebel ausgerastet

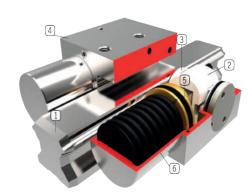
- 3) Höhenausgleich mit Distanzplatte (h) je nach Führungswagengröße
 4) Prüfung durchgeführt mit öliger Führungsschiene bei 6 bar Betriebsdruck

Alle Angaben berufen sich auf: www.zimmer-group.de

Pneumatische-Klemmelemente MKS (mit Federspeicher)


Hinweis:

Verwendbar für cpc Kugelführungsschienen.


Montagehinweis:

Temperatureinsatzbereich 0 - 70 °C Auf eine steife Anschlusskonstruktion achten.

Max. Betriebsdruck: 8 bar

Gr.	Artikel-Nr.	Artikelbezeichnung	Artikel-Nr. Distanzplatte	Artikelbez. Distanzplatte	Höhe (h) Dist.platte (mm)	Verwendung Distanzplatte	Haltekraft (N) 1)	Öffnungs- druck (bar)	Halte- kraft 4) Plus (N)
15	131A00026E	PN-KE-FS-KMS1514D	131A00036E	PN-DP-PMK15-4	4	HRC MN/ML	400	5,5	1050
20	131B00030E	PN-KE-FS-MKS2014D	131B00037E	PN-DP-PMK20-2	2	HRC MN/ML FN/FL	650	5,5	1050
25	131C00030E	PN-KE-FS-MK\$2514D	131C00038E	PN-PD-PMK25-4	4	HRC MN/ML	1200	5,5	1400
30	131E00032E	PN-KE-FS-MKS3005A	131E00039E	PN-DP-PMK30-3	3	HRC MN/ML	1750	5,5	5)
35	131F00034E	PN-KE-FS-MKS3514D	131F00040E	PN-DP-PMK35-7	7	HRC MN/ML	2000	5,5	2200

- 1 Führungsschiene
- 2 Keilgetriebe
- 3 Klemmbalken
- 4 Gehäuse
- 5 Pneumatikkolben
- 6 Federenergiespeicher

A D D

	Gr.		Maße (mm)							
	0	В	А	С	ges. Höhe D Bohrungsabstand		Pneu. Anschluss Befest. Gewinde		(kg)	
	15	58	55	3,2	24	15	M5	4xM4-4,5 tief	2,513	
ь	20	58	60	3	28	20	M5	4xM4-4,5 tief	3,32	
	25	56	75	3,5	36	20	M5	4xM6 - 8 tief	4,024	
	30	68	90	3,5	42	22	M5	4xM8 - 7 tief	5,973	
	35	67	100	4	48	24	M5	4xM8 - 10 tief	8,151	

- 1) Prüfung durchgeführt mit öliger Führungsschiene
- 2) Handhebel ausgerastet
- 3) Höhenausgleich mit Distanzplatte (h) je nach Führungswagengröße
- 4) Prüfung durchgeführt mit öliger Führungsschiene bei 6 bar Betriebsdruck
- 5) Keine Haltekraft-Plus, da der Steg im Klemmelement zu schwach ist für die Flächenpressung

Alle Angaben berufen sich auf: www.zimmer-group.de

cpc

Testbericht integriertes Schmierpad

Linearführungen sind hochpräzise Wälzkörperführungen für lineare Bewegung. Bei den Wälzkörpern handelt es sich um gehärtete Stahlkugeln, die in unendlichem Umlauf zwischen den gehärteten und geschliffenen Laufflächen der Schiene und des Laufwagens geführt werden. Durch diesen Aufbau wird sehr hohe Präzision bei gleichzeitig sehr geringem Verschiebewiederstand erreicht. Unzureichende Schmierung erhöht den Verschiebewiederstand und verursacht erhöhten Verschleiß, was zu einer wesentlich kürzeren Lebenserwartung der Linearführung führt.

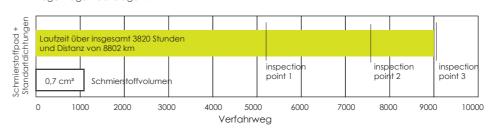
Die integrierten PU-Schmierstoffpads von **cpc** dienen als Schmierstoffreservoir und versorgen die Wälzkörper direkt mit Schmiermittel. Dies verlängert die Nachschmierintervalle beträchtlich und gewährleistet somit eine bessere Versorgung der Bauteile mit Schmierstoff, außerdem ist dieses System bei Kurzhubanwendungen besonders wirksam, was sich sehr positiv auf die Lebensdauer auswirkt

Das besondere Design von **cpc** Linearführungen, ausgestattet mit unserer Langzeitschmierung, führt dank Schmierstoffaufnahme und Schmierstoffabgabe durch die integrierten Schmierstoffpads zu einer Linearführung mit verlängertem Dauereinsatzintervall und hoher Lebenserwartung.

Ein bei **cpc** durchgeführter Dauerlauftest erbrachte folgende Resultate:

ARC15 Schmierstoffpads Versuchsgebnis

Verwendete Linearführung:


Laufwagen: 8x AR15MN SZ N mit integrierten Schmierpads, N-Klasse Profilschiene: 4x AR/HR 15 N 1500, Schienenlänge 1500 mm, N-Klasse

Versuchsbedingungen:

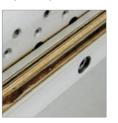
zusätzliche Gewichtskraft pro Laufwagen	1,8 kN (C = 9 kN; C0 = 17,5 kN)
Hub	960 mm
Verfahrgeschwindigkeit (max.)	1 m / s
Schmierung	DAPHNE SUPER MULTI 68 (Viskosität 64,32 cSt 40 C°)
Schmierinterval	Nach Erstbefüllung wurde kein weiterer Schmierstoff hinzugefügt.

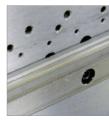
Versuchsergebnis:

Eingetrocknete Schmierstoffreste beginnen sich auf Schiene, Schmierstoffpads und Kugelwagen abzulagern.

inspection point 1 und 2 Schmierstoffbetrachtung

Obere Schmierpads in gutem Zustand. Kein Schmierstoffaustrag auf die Schiene.




Untere Schmierpads in gutem Zustand. Schmierstoffversorgung gewährleistet.

Versuchsaufbau

Testergebnis bei inspection point inspection point 1 und 2 inspection point 3

inspection point 3 Schmierstoffbetrachtung

Rückstände getrockneter Schmier stoffes auf einer der Testschienen, unterer Schmierpad beginnt sich leicht zu verformen

Kunststoffteile und Enddichtungen in gutem Zustand

Kunststoffteile in gutem Zustand

Enddichtungen in

Zusammenfassung:

Dauerlauf über insgesamt 3820 Stunden und eine Distanz von 8802 km. Von 8 getesteten Laufwagen zeigten 2 Laufwagen und eine Schiene eingetrocknete Schmierstoffreste, was auf dringenden Nachschmierbedarf hinweist.

Das Testergebnis zeigt, dass die Schmierpads das Nachschmierintervall effektiv vergrößern und dadurch die Lebensdauer optimal verlängern.